Machine learning to differentiate pulmonary hypertension due to left heart disease from pulmonary arterial hypertension

Author:

Swinnen Katleen,Verstraete KennethORCID,Baratto Claudia,Hardy LauraORCID,De Vos Maarten,Topalovic Marko,Claessen GuidoORCID,Quarck RozennORCID,Belge Catharina,Vachiery Jean-Luc,Janssens WimORCID,Delcroix MarionORCID

Abstract

Background and aimsPulmonary hypertension due to left heart disease (PH-LHD) is the most frequent form of PH. As differential diagnosis with pulmonary arterial hypertension (PAH) has therapeutic implications, it is important to accurately and noninvasively differentiate PH-LHD from PAH before referral to PH centres. The aim was to develop and validate a machine learning (ML) model to improve prediction of PH-LHD in a population of PAH and PH-LHD patients.MethodsNoninvasive PH-LHD predictors from 172 PAH and 172 PH-LHD patients from the PH centre database at the University Hospitals of Leuven (Leuven, Belgium) were used to develop an ML model. The Jacobs score was used as performance benchmark. The dataset was split into a training and test set (70:30) and the best model was selected after 10-fold cross-validation on the training dataset (n=240). The final model was externally validated using 165 patients (91 PAH, 74 PH-LHD) from Erasme Hospital (Brussels, Belgium).ResultsIn the internal test dataset (n=104), a random forest-based model correctly diagnosed 70% of PH-LHD patients (sensitivity: n=35/50), with 100% positive predicted value, 78% negative predicted value and 100% specificity. The model outperformed the Jacobs score, which identified 18% (n=9/50) of the patients with PH-LHD without false positives. In external validation, the model had 64% sensitivity at 100% specificity, while the Jacobs score had a sensitivity of 3% for no false positives.ConclusionsML significantly improves the sensitivity of PH-LHD prediction at 100% specificity. Such a model may substantially reduce the number of patients referred for invasive diagnostics without missing PAH diagnoses.

Funder

Fonds Wetenschappelijk Onderzoek

Actelion Pharmaceuticals

Vlaamse regering

AstraZeneca

Publisher

European Respiratory Society (ERS)

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3