Weak to no correlation between quantitative high-resolution computed tomography metrics and lung function change in fibrotic diseases

Author:

Zou Yixuan,Hou Xuefeng,Anegondi Neha,Negahdar Mohammadreza,Cheung Dorothy,Belloni Paula,de Crespigny Alex,Coimbra Alexandre Fernandez

Abstract

BackgroundIdentifying systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF) patients at risk of more rapid forced vital capacity (FVC) decline could improve trial design. The purpose of the present study was to explore the prognostic value of quantitative high-resolution computed tomography (HRCT) metrics derived by Imbio lung texture analysis (LTA) tool in predicting FVC slope.MethodsThis retrospective study used data from patients who were not treated with investigational drugs with and without background antifibrotic therapies in tocilizumab phase 3 SSc, lebrikizumab phase 2 IPF, and zinpentraxin alfa phase 2 IPF studies conducted from 2015 to 2021. Controlled HRCT axial volumetric multidetector computed tomography scans were evaluated using the Imbio LTA tool. Associations between HRCT metrics and FVC slope were assessed through the Spearman correlation coefficient and adjusted R2in a linear regression model adjusted by demographics and baseline clinical characteristics.ResultsA total of 271 SSc and IPF patients were analysed. Correlation coefficients of highest magnitude were observed in the SSc study between the extent of ground glass, normal volume, quantification of interstitial lung disease, reticular pattern, and FVC slope (−0.25, 0.28, −0.28, and −0.33, respectively), while the correlation coefficients observed in IPF studies were in general <0.2. The incremental prognostic value of the baseline HRCT metrics was marginal after adjusting baseline characteristics and was inconsistent across study arms.ConclusionData from the SSc and IPF studies suggested weak to no and inconsistent correlation between quantitative HRCT metrics derived by the Imbio LTA tool and FVC slope in the studied SSc and IPF population.

Funder

Genentech

Publisher

European Respiratory Society (ERS)

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3