Author:
Schmitt Volker H.,Schmitt Christine,Hollemann David,Mamilos Andreas,Wagner Willi,Weinheimer Oliver,Brochhausen Christoph
Abstract
AimLight microscopy is used as template in the evaluation and further development of medical imaging methods. Tissue shrinkage caused by histological processing is known to influence lung tissue dimensions. In diagnosis of COPD, computed tomography (CT) is widely used for automated airway measurement. The aim of this study was to compare histological and computed tomographic measurements of pig lung bronchi.MethodsAirway measurements of pig lungs were performed after freezing under controlled inflation pressure in a liquid nitrogen bath. The wall thickness of seven bronchi was measured via Micro-CT and CT using the integral-based method (IBM) and the full-width-at-half-maximum method (FWHM) automatically and histologically on frozen and paraffin sections. Statistical analysis was performed using the Wilcoxon test, Pearson's correlation coefficient with a significance level at p<0.05, scatter plots and Bland–Altman plots.ResultsBronchial wall thickness was smallest in frozen sections (median 0.71 mm) followed by paraffin sections (median 0.75 mm), Micro-CT (median 0.84 mm), and CT measurements using IBM (median 0.68 mm) and FWHM (median 1.69 mm). Statistically significant differences were found among all tested groups (p<0.05) except for CT IBM and paraffin and frozen sections and Micro-CT. There was high correlation between all parameters with statistical significance (p<0.05).ConclusionsSignificant differences in airway measurement were found among the different methods. The absolute measurements with CT IBM were closest to the histological results followed by Micro-CT, whereas CT FWHM demonstrated a distinct divergence from the other groups.
Funder
Deutsche Forschungsgemeinschaft
Publisher
European Respiratory Society (ERS)
Subject
Pulmonary and Respiratory Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献