Dimethyl sulfide control of the clean summertime Arctic aerosol and cloud

Author:

Leaitch W. Richard1,Sharma Sangeeta1,Huang Lin1,Toom-Sauntry Desiree1,Chivulescu Alina1,Macdonald Anne Marie1,von Salzen Knut1,Pierce Jeffrey R.2,Bertram Allan K.3,Schroder Jason C.3,Shantz Nicole C.4,Chang Rachel Y.-W.5,Norman Ann-Lise6

Affiliation:

1. Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada

2. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, United States

3. Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada

4. Airzone One Ltd., Mississauga, Ontario, Canada

5. Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, United States

6. Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada

Abstract

Abstract One year of aerosol particle observations from Alert, Nunavut shows that new particle formation (NPF) is common during clean periods of the summertime Arctic associated with attendant low condensation sinks and with the presence of methane sulfonic acid (MSA), a product of the atmospheric oxidation of dimethyl sulfide (DMS). The clean aerosol time periods, defined using the distribution of refractory black carbon number concentrations, increase in frequency from June through August as the anthropogenic influence dwindles. During the clean periods, the number concentrations of particles that can act as cloud condensation nuclei (CCN) increase from June through August suggesting that DMS, and possibly other oceanic organic precursors, exert significant control on the Arctic summertime submicron aerosol, a proposition supported by simulations from the GEOS-Chem-TOMAS global chemical transport model with particle microphysics. The CCN increase for the clean periods across the summer is estimated to be able to increase cloud droplet number concentrations (CDNC) by 23–44 cm-3, comparable to the mean CDNC increase needed to yield the current global cloud albedo forcing from industrial aerosols. These results suggest that DMS may contribute significantly to modification of the Arctic summer shortwave cloud albedo, and they offer a reference for future changes in the Arctic summer aerosol.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3