Long-term high frequency measurements of ethane, benzene and methyl chloride at Ragged Point, Barbados: Identification of long-range transport events

Author:

Archibald A.T.12,Witham C.S.3,Ashfold M.J.45,Manning A.J.3,O’Doherty S.4,Greally B.R.4,Young D.4,Shallcross D.E.4

Affiliation:

1. Department of Chemistry, University of Cambridge, Cambridge, United Kingdom

2. NCAS-Climate, University of Cambridge, Cambridge, United Kingdom

3. Met Office, Exeter, United Kingdom

4. Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Bristol, United Kingdom

5. School of Biosciences, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor, Malaysia

Abstract

Abstract Here we present high frequency long-term observations of ethane, benzene and methyl chloride from the AGAGE Ragged Point, Barbados, monitoring station made using a custom built GC-MS system. Our analysis focuses on the first three years of data (2005–2007) and on the interpretation of periodic episodes of high concentrations of these compounds. We focus specifically on an exemplar episode during September 2007 to assess if these measurements are impacted by long-range transport of biomass burning and biogenic emissions. We use the Lagrangian Particle Dispersion model, NAME, run forwards and backwards in time to identify transport of air masses from the North East of Brazil during these events. To assess whether biomass burning was the cause we used hot spots detected using the MODIS instrument to act as point sources for simulating the release of biomass burning plumes. Excellent agreement for the arrival time of the simulated biomass burning plumes and the observations of enhancements in the trace gases indicates that biomass burning strongly influenced these measurements. These modelling data were then used to determine the emissions required to match the observations and compared with bottom up estimates based on burnt area and literature emission factors. Good agreement was found between the two techniques highlight the important role of biomass burning. The modelling constrained by in situ observations suggests that the emission factors were representative of their known upper limits, with the in situ data suggesting slightly greater emissions of ethane than the literature emission factors account for. Further analysis was performed concluding only a small role for biogenic emissions of methyl chloride from South America impacting measurements at Ragged Point. These results highlight the importance of long-term high frequency measurements of NMHC and ODS and highlight how these data can be used to determine sources of emissions 1000’s km away.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3