Nanomaterials and their role in advancing biodiesel feedstock production: A comprehensive review

Author:

Abstract

Sustainable socio-economic development largely depends on the sustainability of the energy supply from economic, environmental, and public health perspectives. Fossil fuel combustion only meets the first element of this equation and is hence rendered unsustainable. Biofuels are advantageous from a public health perspective, but their environmental and economic sustainability might be questioned considering the conflicts surrounding their feedstocks, including land use change and fuel vs. food conflict. Therefore, it is imperative to put more effort into addressing the downsides of biofuel production using advanced technologies, such as nanotechnology. In light of that, this review strives to scrutinize the latest developments in the application of nanotechnology in producing biodiesel, a promising alternative to fossil diesel with proven environmental and health benefits. The main focus is placed on nanotechnology applications in the feedstock production stage. First, the latest findings concerning the application of nanomaterials as nanofertilizers and nanopesticides to improve the performance of oil crops are presented and critically discussed. Then, the most promising results reported recently on applying nanotechnology to boost biomass and oil production by microalgae and facilitating microalgae harvesting are reviewed and mechanistically explained. Finally, the promises held by nanomaterials to enhance animal fat production in livestock, poultry, and aquaculture systems are elaborated. Despite the favorable features of using nanotechnology in biodiesel feedstock production, the presence of nanoparticles in living systems is also associated with important health and environmental challenges, which are critically covered and discussed in this work.

Publisher

Alpha Creation Enterprise

Subject

Fuel Technology,Renewable Energy, Sustainability and the Environment,Biotechnology,Chemical Engineering (miscellaneous),Energy Engineering and Power Technology,Environmental Engineering,Waste Management and Disposal

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3