Fractionation of fatty acid methyl esters via urea inclusion and its application to improve the low-temperature performance of biodiesel

Author:

Liu Junli,Tao Bernard

Abstract

Biodiesel is viewed as the alternative to petroleum diesel, but its poor low-temperature performance constrains its utilization. Cloud point (CP), the onset temperature of thermal crystallization, appropriately shows the low-temperature performance. The effective way to reduce CP is to remove saturated fatty acid methyl esters (FAMEs). Compared to current methods, this work describes an extraordinary approach to fractionating FAMEs by forming solid urea inclusion compounds (UICs). Urea inclusion fractionation reduces the CPs by removing high melting-point linear saturated FAME components. Urea inclusion fractionation in this study was performed under various processing conditions: mass ratios of urea to FAMEs and solvents to FAMEs, various solvents, FAMEs from various feedstocks, and processing temperatures. Supersaturation of urea in the solution is the driving force, and it significantly affects yield, composition, CP, separation efficiency, and selectivity. Through a single urea inclusion fractionation process, FAMEs, except palm oil FAMEs, resulted in CP reduction ranging from 20 to 42 oC with a yield of 77–80% depending on the compositions. CP of palm oil FAMEs could reach as low as -17 oC with a yield of 46% after twice urea inclusion fractionation. According to the model prediction, the cetane number after urea inclusion fractionation decreased about 0.7–2 but was still higher than the minimum biodiesel requirement. Oxidation stability after urea inclusion decreased according to the proposed model, but this can be mitigated by adding antioxidants. Emission evaluation after urea inclusion fractionation indicated decreased hydrocarbons, carbon monoxide, and particulate matter. However, it resulted in the increasing emission of nitrogen oxides.

Publisher

Greenwave Publishing of Canada

Subject

Fuel Technology,Renewable Energy, Sustainability and the Environment,Biotechnology,Chemical Engineering (miscellaneous),Energy Engineering and Power Technology,Environmental Engineering,Waste Management and Disposal

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3