Producing hydrogen-rich syngas via microwave heating and co-gasification: a systematic review

Author:

Rosyadi Imron,Suyitno Suyitno,Ilyas Albert Xaverio,Faishal Afif,Budiono Andres,Yusuf Mirza

Abstract

Co-gasification contributes significantly to the generation of hydrogen-rich syngas since it not only addresses the issue of feedstock variation but also has synergistic benefits. In this article, recent research on hydrogen concentration and yield, tar content, gasification efficiency, and carbon conversion efficiency is explored systematically. In feedstocks with high water content, steam gasification and supercritical hydrothermal gasification technologies are ideal for producing hydrogen at a concentration of 57%, which can be increased to 82.9% using purification technology. Carbonized coals, chars, and cokes have high microwave absorption when used as feedstocks. Moreover, coconut activated carbon contains elements that provide a high tan δ value and are worthy of further development as feedstocks, adsorbents or catalysts. Meanwhile, the FeSO4 catalyst has the greatest capacity for storing microwave energy and producing dielectric losses; therefore, it can serve as both a catalyst and microwave absorber. Although microwave heating is preferable to conventional heating, the amount of hydrogen it generates remains modest, at 60% and 32.75% in single-feeding and co-feeding modes, respectively. The heating value of syngas produced using microwaves is 17.44 MJ/m³, much more than that produced via conventional heating. Thus, despite a lack of research on hydrogen-rich syngas generation based on co-gasification and microwave heating, such techniques have the potential to be developed at both laboratory and industrial scales. In addition, the dielectric characteristics of feedstocks, beds, adsorbents, and catalysts must be further investigated to optimize the performance of microwave heating processes.

Publisher

Greenwave Publishing of Canada

Subject

Fuel Technology,Renewable Energy, Sustainability and the Environment,Biotechnology,Chemical Engineering (miscellaneous),Energy Engineering and Power Technology,Environmental Engineering,Waste Management and Disposal

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3