Analysis and modelling of competing risks survival data using modified Weibull additive hazards regression approach

Author:

REHMAN Habbiburr1ORCID,CHANDRA N.2ORCID,ABUZAİD Ali3ORCID

Affiliation:

1. Boston University

2. Pondicherry University

3. Al Azhar University, Gaza

Abstract

The cause-specific hazard function plays an important role in developing the regression models for competing risks survival data. Proportional hazards and additive hazards are the commonly used regression approaches in survival analysis. Mostly, in literature, the proportional hazards model was used for parametric regression modelling of survival data. In this article, we introduce a parametric additive hazards regression model for survival analysis with competing risks. For employing a parametric model we consider the modified Weibull distribution as a baseline model which is capable to model survival data with non-monotonic behaviour of hazard rate. The estimation process is carried out via maximum likelihood and Bayesian approaches. In addition to Bayesian methods, a class of non-informative types of prior is introduced with squared error (symmetric) and linear-exponential (asymmetric) loss functions. The relative performance of the different estimators is assessed using Monte Carlo simulation. Finally, using the proposed methodology, a real data analysis is performed.

Publisher

Hacettepe University

Subject

Geometry and Topology,Statistics and Probability,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3