Affiliation:
1. University of Architecture Ho Chi Minh City
Abstract
The intersection graph of quasinormal subgroups of a group $G$, denoted by $\Gamma_{\mathrm{q}}(G)$, is a graph defined as follows: the vertex set consists of all nontrivial, proper quasinormal subgroups of $G$, and two distinct vertices $H$ and $K$ are adjacent if $H\cap K$ is nontrivial. In this paper, we show that when $G$ is an arbitrary nonsimple group, the diameter of $\Gamma_{\mathrm{q}}(G)$ is in $\{0,1,2,\infty\}$. Besides, all general skew linear groups $\mathrm{GL}_n(D)$ over a division ring $D$ can be classified depending on the diameter of $\Gamma_{\mathrm{q}}(\mathrm{GL}_n(D))$.
Funder
Vietnam National University HoChiMinh City
Subject
Geometry and Topology,Statistics and Probability,Algebra and Number Theory,Analysis