ON SUM ANNIHILATOR IDEALS IN ORE EXTENSIONS

Author:

PAYKANİAN Mahsa1ORCID,HASHEMİ Ebrahim1ORCID,ALHEVAZ Abdollah1ORCID

Affiliation:

1. shahrood university of technology

Abstract

A ring $R$ is called a left Ikeda-Nakayama ring (left IN-ring) if the right annihilator of the intersection of any two left ideals is the sum of the two right annihilators. As a generalization of left IN-rings, a ring $R$ is called a right SA-ring if the sum of right annihilators of two ideals is a right annihilator of an ideal of $R$. It is natural to ask if IN and SA property can be extended from $R$ to $R[x; \alpha, \delta]$. In this note, the results concerning the conditions will allow these properties to transfer from $R$ to skew polynomials $R[x;\alpha,\delta]$ are obtained. In addition, for an $(\alpha,\delta)$-compatible ring $R$, it is shown that: (i) If $S = R[x;\alpha,\delta]$ is a left IN-ring with ${\rm{Idm}}(R) ={\rm{Idm}}(R[x;\alpha, \delta])$, then $R$ is left McCoy. (ii) Every reduced left IN-ring with finitely many minimal prime ideals is a semiprime left Goldie ring. (iii) Every commutative principal ideal ring (PIR) $R$, is an IN-ring and so is $R[x]$. (iv) If $R$ be a reduced ring and $n$ a positive integer, then $R$ is right SA if and only if $R[x]/(x^{n+1})$ is right SA.

Publisher

Hacettepe University

Subject

Geometry and Topology,Statistics and Probability,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3