Abstract
In this paper, we investigate what selection principles properties are possessed by small (with respect to the bounding and dominating numbers) unions of spaces with certain (star) selection principles.. Furthermore, we give several results about iterations of these properties and weaker properties than paracompactness. In addition, we study the behaviour of these iterated properties on $\Psi$-spaces. Finally, we show that, consistently, there is a normal star-Menger space that is not strongly star-Menger; this example answers a couple of questions posed in [J. Casas-de la Rosa, S. A. Garcia-Balan, P. J. Szeptycki, \emph{Some star and strongly star selection principles}, Topology Appl. 258 (2019) 572-587]
Funder
Consejo Nacional de Ciencia y Tecnología
Reference28 articles.
1. M. Bonanzinga, \emph{Star-Lindel\"of and absolutely star-Lindel\"of spaces}, Quest. Answ. Gen. Topol. 16 (1998) 79–104.
2. M. Bonanzinga, F. Cammaroto, Lj.D.R. Ko\v{c}inac, \emph{Star- Hurewicz and related properties}, Applied General Topology 5 (2004) 79-89.
3. M. Bonanzinga, M. Matveev, \emph{Some covering properties for $\Psi$-spaces}, Mat. Vesn. 61 (2009) 3-11.
4. L. Bukovsk\'y, J. Hale\v{s}, \emph{On Hurewicz properties}, Topology Appl. 132 (2003) 71-79.
5. D.K. Burke, \emph{Covering properties}, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 347-422.