Affiliation:
1. Jazan University
2. ALANYA ALAADDIN KEYKUBAT UNIVERSITY
Abstract
In this article, simultaneous identification of the time-dependent lowest and source terms in a two-dimensional (2D) parabolic equation from knowledge of additional measurements is studied. Existence and uniqueness of the solution is proved by means of the contraction mapping on a small time interval. Since the governing equation is yet ill-posed (very slight errors in the time-average temperature input may cause relatively significant errors in the output potential and source terms), we need to regularize the solution. Therefore, regularization is needed for the retrieval of unknown terms. The 2D problem is discretized using the alternating direction explicit (ADE) method and reshaped as non-linear least-squares optimization of the Tikhonov regularization function. This is numerically solved by means of the MATLAB subroutine $lsqnonlin$ tool. Finally, we present a numerical example to demonstrate the accuracy and efficiency of the proposed method. Our numerical results show that the ADE is an efficient and unconditionally stable scheme for reconstructing the potential and source coefficients from minimal data which makes the solution of the inverse problem (IP) unique.
Subject
Geometry and Topology,Statistics and Probability,Algebra and Number Theory,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献