Piecewise polynomial numerical method for Volterra integral equations of the fourth-kind with constant delay

Author:

DARANİA Parviz1ORCID,PİSHBİN Saeed1ORCID

Affiliation:

1. Urmia University

Abstract

This work studies the fourth-kind integral equation as a mixed system of first and second-kind Volterra integral equations(VIEs) with constant delay. Regularity, smoothing properties and uniqueness of the solution of this mixed system are obtaied by using theorems which give the relevant conditions related to first and second-kind VIEs with delays. This work studies the fourth-kind integral equation as a mixed system of first and second-kind Volterra integral equations(VIEs) with constant delay. Regularity, smoothing properties and uniqueness of the solution of this mixed system are obtaied by using theorems which give the relevant conditions related to first and second-kind VIEs with delays. A numerical collocation algorithm on the basis of the piecewise polynomial is designed and global convergence of the proposed numerical method is established. Some typical numerical experiments are also performed which confirm our theoretical result. A numerical collocation algorithm on the basis of the piecewise polynomial is designed and global convergence of the proposed numerical method is established. Some typical numerical experiments are also performed which confirm our theoretical result.

Publisher

Hacettepe University

Subject

Geometry and Topology,Statistics and Probability,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3