S-COTORSION MODULES AND DIMENSIONS

Author:

ASSAAD Refat Abelmawla Khaled1,ZHANG Xiaolei2ORCID

Affiliation:

1. Faculty of Science, University Moulay Ismail

2. School of Mathematics and Statistics, Shandong University of Technology

Abstract

Let $R$ be a ring, $S$ a multiplicative subset of $R$. An $R$-module $M$ is said to be $u$-$S$-flat ($u$- always abbreviates uniformly) if $\Tor^R_1 (M, N)$ is $u$-$S$-torsion $R$-module for all $R$-modules $N$. In this paper, we introduce and study the concept of $S$-cotorsion module which is in some way a generalization of the notion of cotorsion module. An $R$-module $M$ is said to be $S$-cotorsion if $\Ext^1_R(F,M)=0$ for any $u$-$S$-flat module $F$. This new class of modules will be used to characterize $u$-$S$-von Neumann regular rings. Hence, we introduce the $S$-cotorsion dimensions of modules and rings. The relations between the introduced dimensions and other (calssical) homological dimensions are discussed. As applications, we give a new upper bound on the global dimension of rings.

Publisher

Hacettepe University

Subject

Geometry and Topology,Statistics and Probability,Algebra and Number Theory,Analysis

Reference6 articles.

1. D. D. Anderson, T. Dumitrescu, S-Noetherian rings, Comm. Algebra. 30 (2002) 4407-4416. L. Bican, E. Bashir, and E. E. Enochs, All modules have flat covers, Bull. London Math. Soc., 33 (2001), 385-390. E. E. Enochs, Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc. 92 (2) (1984), 179-184.

2. E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math., 39 (1981), 189-209. L. Mao and N. Ding, Notes on cotorsion modules, comm. Algebra 33, (2005), 349-360.

3. J. J. Rotman, An Introduction to Homological Algebra, 2nd ed., Springer, New York, (2009). F. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, (Springer Nature Singapore Pte Ltd., Singapore, 2016).

4. X. L. Zhang, Characterizing S-flat modules and S-von Neumann regular rings by uniformity, to appear in Bull. Korean Math. Soc. arxiv.org/abs/2105.07941v1.

5. X. L. Zhang, The u-S-weak global dimension of commutative rings, arXiv:2106.00535.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3