Abstract
We develop new lower bounds for the $A$-numerical radius of semi-Hilbertian space operators, and applying these bounds we obtain upper bounds for the $A$-numerical radius of the commutators of operators. The bounds obtained here improve on the existing ones. Further, we provide characterizations for the equality of the existing $A$-numerical radius inequalities of semi-Hilbertian space operators.
Subject
Geometry and Topology,Statistics and Probability,Algebra and Number Theory,Analysis