A new adjusted Bayesian method in Cox regression model with covariate subject to measurement error

Author:

IŞIK Hatice1ORCID,KARASOY Duru2ORCID,KARABEY Uğur2ORCID

Affiliation:

1. HACETTEPE ÜNİVERSİTESİ

2. HACETTEPE UNIVERSITY

Abstract

An important bias can occur when estimating coefficients by maximizing the known partial likelihood function in the Cox regression model with the measurement error covariate. We focus here on Bayesian methods in order to adjust measurement error and aim to propose an adjusting Bayesian method. Constructing simulation studies using Markov Chain Monte Carlo simulation techniques to investigate the performance of models. We compare the proposed method with the existing method that used partial likelihood function, Bayesian Cox regression model ignoring measurement error, the adjusted Bayesian Cox regression model that exists in the literature by a simulation study which consists of different sample sizes, censoring rates, reliability levels, and regression coefficients. Simulation studies indicate that the proposed method outperformed others given some scenarios. A real data set is analyzed for an illustration of the findings.

Publisher

Hacettepe University

Subject

Geometry and Topology,Statistics and Probability,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3