Affiliation:
1. University of Sfax, Tunisia
Abstract
Let $\big(\mathcal{H}, \langle \cdot, \cdot\rangle \big)$ be a complex Hilbert space and $A$ be a positive (semidefinite) bounded linear operator on $\mathcal{H}$. The semi-inner product induced by $A$ is given by ${\langle x, y\rangle}_A := \langle Ax, y\rangle$, $x, y\in\mathcal{H}$ and defines a seminorm ${\|\cdot\|}_A$ on $\mathcal{H}$. This makes $\mathcal{H}$ into a semi-Hilbert space. The $A$-joint numerical radius of two $A$-bounded operators $T$ and $S$ is given by
\begin{align*}
\omega_{A,\text{e}}(T,S) = \sup_{\|x\|_A= 1}\sqrt{\big|{\langle Tx, x\rangle}_A\big|^2+\big|{\langle Sx, x\rangle}_A\big|^2}.
\end{align*}
In this paper, we aim to prove several bounds involving $\omega_{A,\text{e}}(T,S)$. This allows us to establish some inequalities for
the $A$-numerical radius of $A$-bounded operators. In particular, we extend the well-known inequalities due to Kittaneh [Studia Math. 168 (2005), no. 1, 73-80]. Moreover, several bounds related to the $A$-Davis-Wielandt radius of semi-Hilbert space operators are also provided.
Subject
Geometry and Topology,Statistics and Probability,Algebra and Number Theory,Analysis
Reference24 articles.
1. [1] M.L. Arias, G. Corach, M.C. Gonzalez, Partial isometries in semi-Hilbertian spaces, Linear
Algebra Appl. 428 (7) (2008) 1460-1475.
2. [2] M.L. Arias, G. Corach, M.C. Gonzalez, Metric properties of projections in semi-Hilbertian
spaces, Integral Equations and Operator Theory, 62 (2008), pp.11-28.
3. [3] M.L. Arias, G. Corach, M.C. Gonzalez, Lifting properties in operator ranges, Acta Sci.
Math. (Szeged) 75:3-4(2009), 635-653.
4. [4] H. Baklouti, K. Feki, O.A.M. Sid Ahmed, Joint numerical ranges of operators in semi-
Hilbertian spaces, Linear Algebra Appl. 555 (2018) 266-284.
5. [5] H. Baklouti, K. Feki, O.A.M. Sid Ahmed, Joint normality of operators in semi-Hilbertian
spaces, Linear Multilinear Algebra 68(4) 845-866 (2020).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献