EXPERIMENTAL INVESTIGATION ON STRESS AND DIE-WALL FRICTIONAL CHARACTERISTICS OF METAL POWDER DURING HIGH-VELOCITY COMPACTION

Author:

Zhang Wei,Liu Kun,Zhou Jian,Chen Rongxin,Zhang Ning,Lian Guofu

Abstract

In this study, to evaluate the change in the stress and die-wall frictional characteristics during high-velocity compaction (HVC), a metal powder was subjected to HVC with a heavy hammer based on the stress-testing technology and Janssen-Walker model. The changes in the green density, stress characteristics and coefficients of friction at different impact heights were investigated. The density of green compacts increased with the increase in the impact height. The stress in the upper and lower punches and the die wall showed repeated loading and unloading. The coefficient of friction of the die wall underwent three stages and was related to powder densification. As the height position along the side wall was increased, the coefficient of friction increased gradually. With an increased impact height, the coefficient of friction increased significantly in the incomplete-molding stage but remained constant in the complete-molding stage. This work expands the theoretical basis of densification processing of a metal powder during HVC.

Publisher

Institute of Metals and Technology

Subject

Metals and Alloys,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3