Abstract
The influence of chemical composition and heat treatment on the mechanical properties and formability of the selected commercial aluminium alloy EN AW 5454 was investigated. The main properties of alloy 5454 from the AA 5xxx series are very good corrosion resistant and has good formability. From the cast slab a 50 mm thick slice was taken in the width cross section in the slab centre. One half of the slice was homogenised for 10 hours at a temperature of 530 °C. The cast and homogenised samples were investigated using light and scanning electron microscopy. For the study of the influence of the heat treatment, samples in the as-cast state were annealed in the laboratory furnace at a temperature of 530 °C for 4, 6, 8, 10 and 12 hours. To study the influence of chemical composition, four different samples were prepared: the first without additions, the second with an addition of 1 wt% Mn, the third with 3 wt% Mg and the fourth with an addition of both elements, Mn and Mg. The XRF analyses confirmed the desired chemical composition of all four produced alloys. Half of each alloy’s sample was homogenised at the same temperature and time as the base alloy in the as-cast state. The hot deformation behaviour of the different alloys was investigated using cylindrical hot compression tests performed on a Gleeble 1500D thermo-mechanical simulator. By comparing flow curves a high influence of the thermo-mechanical parameters on the alloy formability can be seen. The alloy has good workability and with the addition of Mn and Mg, the stress values are higher than those of the base alloy.
Publisher
Institute of Metals and Technology
Subject
Metals and Alloys,Polymers and Plastics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献