INFLUENCE OF NICKEL ON THE MICROSTRUCTURAL EVOLUTION AND MECHANICAL PROPERTIES OF LM6-ALLOY-BASED FUNCTIONALLY GRADED COMPOSITE TUBES

Author:

Saiyathibrahim A.,Santhosh S.,Raja Kumar G.,Bharani Kumar S.

Abstract

Despite the growing demand for new materials, we used the horizontal centrifugal casting technique to synthesize functionally graded composite (FGC) tubes using an LM6 alloy containing (3, 6 and 9) w/% nickel. All the fabricated tubes were evaluated for variations in microstructure, hardness and tensile properties along the radial cross-section in three distinct zones (inner, transition and outer). X-Ray diffraction (XRD) results indicated the formation of in-situ Al3Ni in all FGC tubes, and these in-situ tri-aluminides increased further with the addition of Ni. A comprehensive microstructural analysis across the tubes utilising scanning electron microscopy (SEM) images showed that gathering in-situ Al3Ni particles keeps growing nearer the outer zone, and primary Si cuboids increase in the inner zone. This accumulation of particles improved the mechanical properties at all three zones of the FGC tubes compared to the LM6 tube having no nickel. The results of the hardness investigation showed that precipitated Al3Ni in FGCs has a beneficial impact on the enhancement of hardness. Furthermore, the observed UTS improvement in the FGC tubes was clearly associated with the precipitation and strengthening action of Al3Ni intermetallic phases, while a significant reduction in elongation has been noted. Due to the influence of centrifugal force and density variation, the tube containing 9 w/% of Ni demonstrated good gradation among composite alloy-fabricated FGC tubes, with in-situ Al3Ni particles settling largely in the outer zone and primary Si particles settling primarily in the inner zone across the radial thickness.

Publisher

Institute of Metals and Technology

Subject

Metals and Alloys,Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3