DEVELOPMENT OF THE RECYCLING PROCEDURE FOR RAPID ANTIGEN TESTS

Author:

Rudolf Rebeka,Feizpour DarjaORCID,Jelen Žiga,Majerič Peter,Švarc Tilen,Zadravec Matej,Gomboc Timi,Kocijan Aleksandra

Abstract

The article presents the problem of rapid antigen tests when they become mass waste after use. Based on this, the hypothesis was made that rapid antigen tests can be recycled. Rapid antigen tests, which were used in the Covid-19 epidemic to quickly detect infections in the population or to confirm the presence of the Sars-Cov 2 virus in patients, were intended to limit the spread of the epidemic. To confirm the hypothesis of recycling for rapid antigen tests, the LFIA-REC ATP 150 project was prepared, which was selected for co-financing by the Norwegian Fund. Rapid antigen tests consist of a sample and conjugate pad, detectable or nitrocellulose membranes and absorbent pads and a plastic case. The function of the sample pad is to evenly absorb the sample (mucus, blood) and lead it to the conjugate pad with a steady flow. Gold nanoparticles (labels) are deposited on the conjugate pad. The key is that the gold nanoparticles are conjugated with capture molecules capable of binding to potentially present antibodies or virus in the sample. The scope of the research problem thus required the inclusion of various characterization techniques that must be applied to the individual material in the rapid antigen test to subsequently develop an efficient recycling process for the rapid antigen tests. The result of the research presented in this paper represents a newly developed algorithm of characterization techniques, which includes a recommended description of the preparation of samples of key materials from rapid antigen tests. This algorithm successfully achieved the characterization of gold nanoparticles from rapid antigen tests. Based on the developed algorithm, the final part of the project will validate the recycling process of rapid antigen tests, so that they can be recycled, i.e. gold nanoparticles or plastic used in new products. The paper presents the algorithm of characterization techniques with a description of the preparation of material samples from rapid antigen tests.

Publisher

Institute of Metals and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3