METHOD ACHIEVING COOLING UNIFORMITY AND OPTIMAL PLATE-CURVATURE DURING ULTRA-FAST COOLING IN A HSM

Author:

Jiang Lianyun,Wei Yaoyu,Li Zhenlei,Ma Lifeng

Abstract

The flow field in the top and bottom surface of the hot rolled strip is different during cooling process with effect of gravity. Then it can affect the strip cooling uniformity of the top and bottom surface, and the plate curvature problems may be appeared. The finite element method was taken to study the plate curvature affecting law and a conclusion was obtained: the uniformity of the heat transfer coefficient in the top and bottom surface was the key to keep plate curvature well after rolling. The finite volume method was taken to calculate the heat transfer coefficient during run-out table laminar cooling (LC) and ultra-fast cooling (UFC) with different top nozzle fluxes and water flux ratios. The heat transfer coefficient and its distribution with different cooling methods and process parameters were obtained, and some conclusions were obtained by analysis: the bottom and top surface heat transfer coefficient can be kept nearly the same by adjusting water flux ratio between the bottom nozzle and top nozzle. The optimal water flux ratios of laminar cooling were 1.20 and 1.15 when top nozzle fluxes were 100m3/h and 120m3/h respectively. The optimal water flux ratios of ultra fast cooling were 1.08, 1.10, 1.15, 1.20 and 1.20 when top nozzle fluxes were 80m3/h, 100m3/h, 120m3/h, 140m3/h and 160m3/h respectively. The obtained results and water flux ratio calculating model were used in several strip cooling lines of the hot strip mill lines and obtained favorable effect.

Publisher

Institute of Metals and Technology

Subject

Metals and Alloys,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3