CORROSION AND PROTECTION OF NON-PATINATED, SULPHIDE- AND CHLORIDE-PATINATED BRONZE

Author:

Novak Živa,Kosec Tadeja

Abstract

The surface of bronze undergoes changes when it is exposed to a polluted atmosphere, and bronze should therefore be protected from this natural deterioration. The most common protective coating currently in use is Incralac, which includes toxic components and is reported to dissolve a few months after application. This work therefore investigates a fluoropolymer-based coating (FA-MS), and compares it to the protection offered by Incralac. Bronze samples (non-patinated, sulphide-patinated or chloride-patinated) were exposed to simulated urban rain for four months. The corrosion products formed were characterised using SEM/EDS and Raman analyses. To study the protection efficiency of the newly developed fluoropolymer coating (FA-MS) and Incralac protection, various electrochemical methods were used: measurements of open circuit potential linear polarisation and potentiodynamic measurements. Findings show that the FA-MS coating provides a protection efficiency of 71 % for chloride-patinated bronze and 99.5 % for sulphide-patinated bronze. Contact angles of the FA-MS samples were higher than those of the unprotected samples or the samples protected by Incralac, indicating better hydrophobic properties of the FA-MS coating.

Publisher

Institute of Metals and Technology

Subject

Metals and Alloys,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3