DRY SLIDING WEAR BEHAVIOUR OF CARBON NANOTUBE/ALUMINA/EPOXY HYBRID NANOCOMPOSITES

Author:

R Ramkumar,C Sabarinathan,M Rajeswaran,P Prathap,R Sankar Ganesh

Abstract

In the field of materials science, polymer composites have been extensively used in various industries such as marine, automotive, aerospace, sports and other industries due to their good dimensional stability and excellent structural properties. In this present research investigation, epoxy served as the polymer material, while multi-walled carbon nanotubes (MWCNTs) and alumina nanofillers were employed for reinforcing the matrix through hybridization. The wear characteristics of the composite material were examined under dry sliding conditions, employing a pin-on-disc machine with a track diameter of 50 mm. The load on the specimen was varied between low (20 N), medium (40 N) and high (60 N), while the weight fraction of the hybrid nanofillers underwent variations in a range of 0.1–0.5 w/% with an increment of 0.1 w/%. The results showed that the reinforcement of hybrid nanofillers significantly reduces the wear phenomena of the composite material. Hybrid nanocomposites with (0.1, 0.2 and 0.3) w/% of MWCNTs-Al2O3 exhibit noteworthy advancements in the wear resistance. Particularly the 0.3 w/% MWCNTs-Al2O3 hybrid nanocomposite demonstrates exceptional wear resistance compared to pure epoxy. The incorporation of 0.3 w/% of MWCNTs-Al2O3 results in a significantly improved wear resistance, with enhancements of (83, 81 and 80) % observed during low (20 N), moderate (40 N) and high (60 N) loading conditions, respectively, compared to pure epoxy. Similarly, deformation, delamination and filler plugging were observed with medium and high load. The surface morphology of the worn specimens was assessed through the application of field emission scanning electron microscopy.

Publisher

Institute of Metals and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3