INVESTIGATION OF THE MECHANICAL AND TRIBOLOGICAL BEHAVIOURS OF CUPOLA SLAG AND MWCNT-REINFORCED EPOXY HYBRID NANOCOMPOSITES: A SUSTAINABLE APPROACH FOR ENVIRONMENTAL PRESERVATION

Author:

M. Rajeswaran,P. Prathap,S. Kannan,T. A. Sundaravadivel

Abstract

This experimental investigation explores the mechanical and tribological characteristics of cupola slag (CS) and multiwall carbon nanotubes (MWCNTs) reinforced hybrid nanofiller epoxy composites. Cupola slag is an industrial by-product that is generated during the melting of cast iron. The disposal of slag residues in landfills results in environmental pollution. In the context of environmental preserving as well developing new engineering composites material from waste to resource. MWCNTs possess an excellent strength-to-weight ratio, high stiffness, and thermal properties. The mechanical and tribological characteristics of the hybrid nanocomposites comprising epoxy were examined by varying the weight fraction of fillers composed of CS and MWCNTs. The experimental results indicated that the ECSM3 hybrid nanocomposites have superior tensile strength and the flexural modulus improved by 92 % and 78 % respectively when compared with epoxy. Similarly, the tribology performance of the ECSM3 exhibited improved specific wear resistance of 97 %, 106 % and 88 % on the dry-sliding loads of 10 N, 20 N and 30N, respectively. A morphological analysis was carried out on fractured and worn surfaces of the specimen to understand the homogeneous dispersion and matrix-interlocking mechanism between the hybrid nanofillers and the epoxy matrix. The integration of CS alongside MWCNTs for the fabrication of epoxy hybrid nanocomposites represents a stride towards sustainable and eco-friendly technology in the production of multifunctional composite materials for diverse engineering applications.

Publisher

Institute of Metals and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3