Greedy, A-Star, and Dijkstra’s Algorithms in Finding Shortest Path

Author:

Wayahdi Muhammad Rhifky,Ginting Subhan Hafiz Nanda,Syahputra Dinur

Abstract

The problem of finding the shortest path from a path or graph has been quite widely discussed. There are also many algorithms that are the solution to this problem. The purpose of this study is to analyze the Greedy, A-Star, and Dijkstra algorithms in the process of finding the shortest path. The author wants to compare the effectiveness of the three algorithms in the process of finding the shortest path in a path or graph. From the results of the research conducted, the author can conclude that the Greedy, A-Star, and Dijkstra algorithms can be a solution in determining the shortest path in a path or graph with different results. The Greedy algorithm is fast in finding solutions but tends not to find the optimal solution. While the A-Star algorithm tends to be better than the Greedy algorithm, but the path or graph must have complex data. Meanwhile, Dijkstra's algorithm in this case is better than the other two algorithms because it always gets optimal results.

Publisher

Jurnal Komuniksi ISKI

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pore-to-Darcy scale permeability upscaling for media with dynamic pore structure using graph theory;Applied Computing and Geosciences;2024-09

2. The Combination Of K-Means And A* Methods For Determining The Best Route For Vegetable Sellers;2024 International Electronics Symposium (IES);2024-08-06

3. SafeRoute: A Safer Outdoor Navigation Algorithm with Smart Routing for People with Visual Impairment;Proceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments;2024-06-26

4. A passage time–cost optimal A* algorithm for cross-country path planning;International Journal of Applied Earth Observation and Geoinformation;2024-06

5. Obstacle avoidance motion planning for space redundant manipulator based on improved RRT algorithm;Journal of Physics: Conference Series;2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3