Using quantitative real-time polymerase chain reaction (qRT-PCR) for detection microcystin producing cyanobacteria

Author:

Pham Thanh Luu,Hoang Yen Tran Thi,Thai Tran Thanh,Quang Ngo Xuan

Abstract

Introduction: Cyanobacterial blooms (CBs) have become a growing concern worldwide. In the natural environment, potentially toxic (can produce toxins) and non-toxic (can not produce toxins) colonies often co-exist within a bloom. Methods: The present study aimed to quantify toxic and non-toxic cells of cyanobacteria in the Tri An Reservoir (TAR) using a quantitative real-time polymerase chain reaction (qRT-PCR). Results: Results showed that the Microcystis genus dominated the cyanobacterial communities in the TAR. Microcystis was also the primary microcystins (MC) producing cyanobacteria in the water. Total cyanobacteria and Microcystis cells ranged from 152103 to 27106 copy/L and from 105103 to 19106 copy/L, respectively. The cell number of potentially MC-producing cyanobacteria (corresponding to the Microcystis mcyD gene) varied from 27103 to 13106 copy/L. MC concentrations often present in raw water with a concentration of up to 4.8 mg/L. Our results showed that the MC concentration in raw water was positively correlated with the mcyD copy number, suggesting that Microcystis spp. are the main toxin producers in the TAR's surface water. Conclusion: Our study suggested that qRT-PCR techniques and traditional count are comparable and could be used to quantify cyanobacteria. In addition, the qRT-PCR techniques can determine the toxic cyanobacterial cells and could be used as a tool for early monitoring of toxic cyanobacteria in lakes and reservoirs.

Publisher

Viet Nam National University Ho Chi Minh City

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molecular Identification of Microcystin Synthetase Genes mcyE in Cyanobacteria Using PCR;Protocols for Cyanobacteria Sampling and Detection of Cyanotoxin;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3