Author:
Hadji Lazreg,Plevris Vagelis,Madan Royal
Abstract
In this work, the static and free vibration analysis of functionally graded (FG) porous beams is investigated using a new higher-order shear deformation model (HSD). The porosity that develops naturally during the fabrication of a material is arbitrary in nature. Therefore, in the present study, a variation is considered taking into account three distribution patterns, namely (i) even distribution, (ii) uneven distribution, and (iii) the logarithmic-uneven pattern. Furthermore, the impact of several micromechanical models on the bending and free vibration behavior of the beams was investigated. Different micromechanical models were used to examine the mechanical properties of functionally graded beams, the properties of which change continuously throughout the thickness following a power law. Using the HSD model, the equations of motion are obtained using Hamilton’s principle. To obtain displacements, stresses, and frequencies, the Navier type solution method was employed, and the numerical results were compared to those published in the literature. The impact of porosity and volume fraction index, different micromechanical models, mode numbers, and geometry on the bending and natural frequencies of imperfect FG beams were investigated.
Reference21 articles.
1. 1. Avcar, M. (2019). "Free vibration of imperfect sigmoid and power law functionally graded beams." Steel and Composite Structures, 30(6), 603-615. DOI: https://doi.org/10.12989/scs.2019.30.6.603.
2. 2. Benaberrahmane, I. et al. (2021). "Investigating of free vibration behavior of bidirectional FG beams resting on variable elastic foundation." Geomechanics and Engineering, 25(5), 383-394. DOI: https://doi.org/10.12989/gae.2021.25.5.383.
3. 3. Euler, L. (1744). Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, apud Marcum-Michaelem Bousquet & Socios, Lausannae & Genevae.
4. 4. Gasik, M. M. (1998). "Micromechanical modelling of functionally graded materials." Computational Materials Science, 13(1), 42-55. DOI: https://doi.org/10.1016/S0927-0256(98)00044-5.
5. 5. Hadji, L. & Avcar, M. (2021). "Free Vibration Analysis of FG Porous Sandwich Plates under Various Boundary Conditions." Journal of Applied and Computational Mechanics, 7(2), 505-519. DOI: https://doi.org/10.22055/jacm.2020.35328.2628.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献