Abstract
A construção de curvas de sítio a partir da modelagem da altura de árvores dominantes medidas em parcelas permanentes em diferentes idades, considerando uma idade de referência, se constitui no método mais prático e difundido no meio florestal para classificar a capacidade produtiva local. Dentro de um processo de Planejamento Florestal, o grau de assertividade das curvas geradas tem consequências quantitativas e qualitativas na alocação de recursos, de forma que a melhoria contínua dos métodos de classificação é de suma importância. Este estudo teve como objetivo propor o uso de modelos de Redes Neurais Artificiais (RNA) para estimar a altura de árvores dominantes de eucalipto, e aplicá-los na geração de curvas de sítio utilizando o método da curva guia, como uma alternativa aos modelos tradicionais de regressão não-linear, avaliando a precisão das estimativas e a estabilidade da classificação da capacidade produtiva local gerada por essas abordagens. Os dados utilizados foram provenientes das medições de 8.819 parcelas permanentes instaladas em povoamentos clonais de Eucalyptus urophylla × Eucalyptus grandis. Foram ajustados cinco modelos não lineares clássicos e as RNA foram treinadas com dois algoritmos: Feed Forward Back Propagation Network (FFBP) e Cascade Forward Back Propagation Network (CFBP). Os resultados mostraram que, de maneira geral, quando utilizada somente a idade das parcelas para estimativa da altura dominante, não houve diferença nos resultados entre as RNA treinadas com os dois algoritmos e os modelos não lineares. Contudo, com adição de novas variáveis do povoamento durante o treinamento das RNA, houve uma melhora nas estimativas das alturas dominantes e gerou uma classificação da capacidade produtiva 13% mais estável se comparada aos modelos de regressão não linear.
Publisher
Universidade Federal de Santa Maria