Classificação da capacidade produtiva com alturas de árvores dominantes estimadas por RNA

Author:

Leite Marcos Vinicius SantanaORCID,Cabacinha Christian DiasORCID,Assis Adriana LeandraORCID

Abstract

A construção de curvas de sítio a partir da modelagem da altura de árvores dominantes medidas em parcelas permanentes em diferentes idades, considerando uma idade de referência, se constitui no método mais prático e difundido no meio florestal para classificar a capacidade produtiva local. Dentro de um processo de Planejamento Florestal, o grau de assertividade das curvas geradas tem consequências quantitativas e qualitativas na alocação de recursos, de forma que a melhoria contínua dos métodos de classificação é de suma importância. Este estudo teve como objetivo propor o uso de modelos de Redes Neurais Artificiais (RNA) para estimar a altura de árvores dominantes de eucalipto, e aplicá-los na geração de curvas de sítio utilizando o método da curva guia, como uma alternativa aos modelos tradicionais de regressão não-linear, avaliando a precisão das estimativas e a estabilidade da classificação da capacidade produtiva local gerada por essas abordagens. Os dados utilizados foram provenientes das medições de 8.819 parcelas permanentes instaladas em povoamentos clonais de Eucalyptus urophylla × Eucalyptus grandis. Foram ajustados cinco modelos não lineares clássicos e as RNA foram treinadas com dois algoritmos: Feed Forward Back Propagation Network (FFBP) e Cascade Forward Back Propagation Network (CFBP). Os resultados mostraram que, de maneira geral, quando utilizada somente a idade das parcelas para estimativa da altura dominante, não houve diferença nos resultados entre as RNA treinadas com os dois algoritmos e os modelos não lineares. Contudo, com adição de novas variáveis do povoamento durante o treinamento das RNA, houve uma melhora nas estimativas das alturas dominantes e gerou uma classificação da capacidade produtiva 13% mais estável se comparada aos modelos de regressão não linear.

Publisher

Universidade Federal de Santa Maria

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3