Selection of models and parameter estimation for monitoring the COVID-19 epidemic in Brazil via Bayesian inference

Author:

Inez Lucas MartinsORCID,Dalla Carlos Eduardo RambalducciORCID,Silva Wellington Betencurte daORCID,Dutra Julio Cesar SampaioORCID,Costa José Mir Justino daORCID

Abstract

In 2019, a new strain of coronavirus led to an outbreak of disease cases named COVID-19, evolving rapidly into a pandemic. In Brazil, delayed decision making and lack of knowledge have resulted in an alarming increase in daily transmission and deaths. In this context, researchers used mathematical models to assist in determining the parameters that act in the spread of diseases, revealing containment measures. However, numerous mathematical models exist in the literature, each with specific parameters to be specified, leading to an important question about which model best represents the pandemic behavior. In this regard, this work aims to apply the Approximate Bayesian Computation method to select the best model and simultaneously estimate the parameters to resolve the abovementioned issue. The models adopted were susceptible-infected-recovered (SIR), susceptible-exposed-infected-recovered (SEIR), susceptible-infected-recovered-susceptible (SIRS), and susceptible-exposed-infected-recovered-susceptible (SEIRS). Approximate Bayesian Computation Monte Carlo Sequencing (ABC-SMC) was used to select among four competing models to represent the number of infected individuals and to estimate the model parameters based on three periods of Brazil COVID-19 data. A forecasting test was performed to test the ABC-SMC algorithm and the selected models for two months. The result was compared with the actual number of infected that were reported. Among the teste models, it was found that the ABC-SMC algorithm had a promising performance, since the data were noisy and the models could not predict all parameters.

Publisher

Universidade Federal de Santa Maria

Subject

General Medicine

Reference116 articles.

1. Apergis, N. (2022). COVID-19 and cryptocurrency volatility: Evidence from asymmetric

2. modelling. Financ Res Lett, V.47, P. 102- 659. Disponível em: https://linkinghub.elsevier.

3. com/retrieve/pii/S1544612321005894. Acesso em: Julho de 2023.

4. Beaumont, M. A. (2010). Approximate bayesian computation in evolution and ecology. Annual

5. Review of Ecology, Evolution, and Systematics, 41(1), 379–406. Disponível em: https://doi.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3