Conductional heat transfer in magmatic intrusions

Author:

Costa Tamires Bojjis daORCID,Schramm MarceloORCID,Petersen Claudio ZenORCID,Tumelero FernandaORCID

Abstract

The thermal effect that occurs due to the insertion of igneous intrusions in sedimentary basins has been widely investigated in different geological contexts, either to obtain more precise information about the development of the basin and or for the purpose of exploring and evaluating the mineral resources existing there. We can verify that the knowledge of the thermal gradient is fundamental in studies of heat distribution through means such as the Earth's crust or mantle, as this way, we obtain the thermal evolution of magmatic intrusions and adjacent rocks over geological time. For the present work, the determination of the temperature gradient and consequently the thermal evolution of a 13-meter-thick sill and adjacent rocks located in the Paraná Basin - Irati Formation, was obtained through the use of the one-dimensional heat dispersion model in transient regime of finite time, in which, in the spatial variable the numerical method of finite differences (FDM) is used and in the temporal variable the Euler method. Although in cases of large and thick magmatic bodies or sections that include the terrestrial lithospheric and asthenospheric mantles, the mechanism of convection and radiation has an expressive role in the energy transfer process. However, in most geological situations, conduction is the most important mechanism in the heat distribution process.

Publisher

Universidade Federal de Santa Maria

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3