Abstract
Today there are quite a few widespread misconceptions of exploratory data analysis (EDA). One of these misperceptions is that EDA is said to be opposed to statistical modeling. Actually, the essence of EDA is not about putting aside all modeling and preconceptions; rather, researchers are urged not to start the analysis with a strong preconception only, and thus modeling is still legitimate in EDA. In addition, the nature of EDA has been changing due to the emergence of new methods and convergence between EDA and other methodologies, such as data mining and resampling. Therefore, conventional conceptual frameworks of EDA might no longer be capable of coping with this trend. In this article, EDA is introduced in the context of data mining and resampling with an emphasis on three goals: cluster detection, variable selection, and pattern recognition. TwoStep clustering, classification trees, and neural networks, which are powerful techniques to accomplish the preceding goals, respectively, are illustrated with concrete examples.
Publisher
Universidad de San Buenaventura
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献