Hydrophobicity and micro-/nanotribological properties of polymeric nanolines

Author:

Pham D-C1,Na K1,Piao S1,Yang S1,Kim J1,Yoon E-S1

Affiliation:

1. Nano-bio Center Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136–791, Korea

Abstract

This paper presents an investigation of the effects of a topographical modification, namely, nanolines, on the hydrophobicity and micro-/nanotribological properties of poly(methyl methacrylate) surfaces. The polymeric line patterns were fabricated on the poly(methyl methacrylate) films by using the capillary force lithography technique. Examinations of the water contact angle revealed that the line patterns exhibited increased hydrophobicity compared to the flat film, along with an anisotropic wetting. It was observed that the presence of the nanolines greatly reduced the adhesion and micro-/nanofriction. Furthermore, the friction behaviour varied depending upon the sliding direction as the counter bodies slid over the line structure. It was also observed that the shape of the top of the nanolines noticeably influenced nanoscale adhesion and friction. Both the flat film and the nanolines were damaged in the microscale tests; however, the nanolines exhibited less damage than the film, presumably due to their enhanced adhesion and friction properties.

Publisher

SAGE Publications

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3