Regularization and Parameter Choice for the Third Kind Nonlinear Volterra-Stieltjes Integral Equation Solutions

Author:

Bedelova N.1ORCID,Asanov A.2ORCID,Orozmamatova Zh.1

Affiliation:

1. Osh State University

2. Kyrgyz-Turkish Manas University

Abstract

The article considers nonlinear Volterra-Stieltjes integral equations of the third kind, and its solution by regularizing operator according to M. M. Lavrentev. A uniqueness theorem was proved, and a regularization parameter was chosen. The research uses the concept of a derivative with respect to an increasing function, the method of regularization according to M. M. Lavrentevs methods in functional analysis, methods of transformation of equations, methods of integral and differential equations. Proposed methods can be used to study the integral, integral-differential equations of the Volterra-Stieltjes type of high orders, as well as in the qualitative study of some applied processes in the field of physics, ecology, medicine, and the theory of control complex systems. They can be used in the further development of the theory of integral equations in classes of incorrect problems, in numerical solution of Volterra-Stieltjes integral equations of the third kind, and when solving specific applied problems that lead to equations of the third kind.

Publisher

Publishing Center Science and Practice

Subject

General Medicine

Reference17 articles.

1. Mikhlin, S. G. (1959). Lektsii po lineinym integral'nym uravneniyam. Moscow, Fizmatgiz, 234.

2. Tsalyuk, Z. B. (1977). Integral'nye uravneniya Vol'terra. Itogi nauki i tekhniki. Seriya Matematicheskii analiz, 15(0), 131-198.

3. Lavrentev, M. M. (1959). Ob integral'nykh uravneniyakh pervogo roda. Doklady AN SSSR, 127(1), 31-33.

4. Bedelova, N., Asanov, A., Orozmamatova, Z., & Abdullaeva, Z. (2021). Regularization and Choice of the Parameter for the Third Kind Nonlinear Volterra-Stieltjes Integral Equation Solutions. International Journal of Modern Nonlinear Theory and Application, 10, 81-90. https://doi.org/10.4236/ijmnta.2021.102006

5. Denisov, A. M. (1999). Elements of the theory of inverse problems. (VSP).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3