Isopropanol to Hydrocarbons Transformation Particularities on Hybrid Zeolite H-ZSM-5 and H-Beta Systems

Author:

Brovko R.1ORCID,Mushinskii L.1ORCID,Doluda V.1ORCID

Affiliation:

1. Tver State Technical University

Abstract

The continuous depletion of hydrocarbon sources contributes to a wide study of the use of biorenewable raw materials to obtain synthetic hydrocarbons from them. Isopropyl alcohol is traditionally produced by chemical hydration of propylene, however, with the development of biotechnology, broad prospects have opened for its production by fermentation of glucose-containing substrates obtained from agricultural and forestry waste. This way, isopropyl alcohol can also be considered as a bio-renewable raw material and it can be widely used for the production of chemical synthesis products, including hydrocarbons. One of the possible ways of processing isopropyl alcohol is the catalytic transformation of alcohols on zeolites and zeotypes of various natures with the formation of hydrocarbons. Currently, zeolite H-ZSM-5 and zeotype SAPO-34 are the most frequently used catalysts for the transformation of alcohols into hydrocarbons, however, their rapid deactivation due to the formation of a carbon residue remains an unresolved problem. The formation of core-shell structures with H-ZSM-5 zeolite in center and an outer shell consist of H-Beta zeolite with large pores can reduce the deactivation of zeolite because of increase in reagents diffusion rate. In this article is devoted to synthesis of ZSM-5/Beta sample with a core-shell structure, as well as a study of its catalytic and physicochemical properties. To form the H-ZSM-5 zeolite, a colloidal solution of tetrapropylammonium hydroxide, a colloidal solution of silicon oxide, aluminum oxide, sodium hydroxide of distilled water was used. The colloidal solution was placed in an autoclave, heated to 140 °C and kept at this temperature for 48 hours, after which the crystals formed were centrifuged, washed with distilled water and kept in a 1M solution of ammonium nitrate for a day. Then, to form the H-Beta layer, H-ZSM-5 was suspended in a colloidal solution consisting of tetraethylammonium hydroxide, tetraethylammonium chloride, a colloidal solution of silicon oxide, sodium hydroxide, sodium chloride and distilled water. The suspension was placed in an autoclave and kept at a temperature of 140 °C for 48 hours, followed by centrifugation, washing in distilled water, suspended in a 1M solution of ammonium nitrate, with repeated washing with distilled water, drying and calcining at 600 °C. Testing of the synthesized of H-ZSM-5/Beta zeolite sample showed a significant decrease in the rate of deactivation compared to the synthesized sample of H-ZSM-5; it is also necessary to note a slight increase in the fraction of liquid hydrocarbons for the sample H-ZSM-5/Beta.

Funder

Russian Foundation for Basic Research

Publisher

Publishing Center Science and Practice

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3