Adaptable system of equipment and jigging for automatic assembly

Author:

Vartanov Mikhail1ORCID,Lin Nguyen Van1ORCID

Affiliation:

1. Moscow Polytechnic University

Abstract

Currently, industrial robots are widely used to perform position checking tasks through minimum contact, that is spot welding, spray painting, packaging and loading and unloading operations. However, performing assembly tasks with high tolerances is still a big problem for robots due to various uncertainties about assembled parts, i.e. clamp holdings, slave tools. To correct these errors, it is necessary to have positive mobility, which is called adaptation of part position. Mobility adaptation can be achieved through active or passive means, as well as a combination of them. Passive adaptation methods are based on the use of elastic and damping elements. The structures are designed in such a way that the forces arising at the points of contact of the parts correct the errors of their position. Active adaptation methods are based on adaptive feedback control, when the assembly process and the position of the parts are adjusted automatically by measuring the position and due to contact forces. From this perspective, the expanding of research and development has led to the high robotic technologies for industrial applications. Modern technologies of robotic assembly are analyzed for better understanding of technological trends in the development of industrial robots, constraint recognition of production methods and specifying the lines of future research in this area. In this article, the typical "shaft- spacer" operations are of particular interest. Assembly control strategies are classified based on the assembly pattern. Robotic assembly management strategies and existing technologies boundary conditions are discussed in detail specifying the lines of future research in adaptable control of robotic assembly.

Publisher

Bryansk State Technical University BSTU

Reference23 articles.

1. Xu L.D. et al. AutoAssem: an automated assembly planning system for complex products // Proceedings of the IEEE Transactions on Industrial Informatics. 2012. V. 8. Iss. 3. P. 669–678, DOI: doi.org/ 10.1109/TII.2012.2188901., Xu L.D. et al. AutoAssem: an automated assembly planning system for complex products // Proceedings of the IEEE Transactions on Industrial Informatics. 2012. V. 8. Iss. 3. P. 669–678, DOI: doi.org/ 10.1109/TII.2012.2188901.

2. Park H. et al. Dual arm peg in-hole assembly with a programmed compliant system // Proceedings of the Ubiquitous Robots and Ambient Intelligence (URAI). 2014. P. 431–433. DOI: doi.org/10.1109/URAI.2014.7057477., Park H. et al. Dual arm peg in-hole assembly with a programmed compliant system // Proceedings of the Ubiquitous Robots and Ambient Intelligence (URAI). 2014. P. 431–433. DOI: doi.org/10.1109/URAI.2014.7057477.

3. Quek Z.F. et al. Sensory substitution of force and torque using 6-DOF tangential and normal skin deformation feedback // Proceedings of the IEEE International Conference on Robotics and Automation, IEEE. 2015. P. 264–271. DOI: doi.org/10.1109/ICRA.2015.7139010., Quek Z.F. et al. Sensory substitution of force and torque using 6-DOF tangential and normal skin deformation feedback // Proceedings of the IEEE International Conference on Robotics and Automation, IEEE. 2015. P. 264–271. DOI: doi.org/10.1109/ICRA.2015.7139010.

4. Yun S.K. Compliant manipulation for peg-in hole: is passive compliance a key to learn contact motion? // Proceedings of the IEEE International Conference on Robotics and Automation, IEEE. 2008. P. 1647–1652. DOI: doi.org/10.1109/ROBOT.2008.4543437., Yun S.K. Compliant manipulation for peg-in hole: is passive compliance a key to learn contact motion? // Proceedings of the IEEE International Conference on Robotics and Automation, IEEE. 2008. P. 1647–1652. DOI: doi.org/10.1109/ROBOT.2008.4543437.

5. Fukukawa T., Park J., Fukuda T. Precise assembly of ring part with optimized hollowed finger // ROBOMECH Journal. 2016. V. 16. P. 13–15. DOI: doi.org/10.1186/s40648-016-0055-1., Fukukawa T., Park J., Fukuda T. Precise assembly of ring part with optimized hollowed finger // ROBOMECH Journal. 2016. V. 16. P. 13–15. DOI: doi.org/10.1186/s40648-016-0055-1.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3