On a New Distance Approximation for an Implicit Polynomial Manifold Fitting

Author:

Гончарова Марина1,Goncharova Marina2,Утешев Алексей1,Uteshev Aleksey2

Affiliation:

1. Санкт-Петербургский государственный университет

2. Sankt-Peterburgskiy gosudarstvennyy universitet

Abstract

The application of a new approximate point-to-algebraic manifold distance formula is suggested to the geometric approach to curve fitting and surface reconstruction using implicit polynomial manifolds. A brief overview of the fitting methods features for implicit algebraic manifolds is given. To illustrate the possibilities of a new approximate point-to-manifold distance formula, the equidistant curves of the exact distance, Samson’s distance and the present formula are given. A four-step algorithm for implicit algebraic manifold fitting is proposed, using one of the algebraic fitting methods at the initial step, the present approximate formula for the distance finding to calculate the geometric criterion of approximation quality and an optimization method for updating the value of the vector of coefficients of the manifold. The first results of the proposed algorithm on test data are briefly characterized. In conclusion, the tasks and directions for further research are described.

Publisher

Bryansk State Technical University

Reference16 articles.

1. S. Ahn, W.Rauh, H. Cho, and H. Warnecke, Orthogonal Distance Fitting of Implicit Curves and Surfaces. IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 620–638, 2002., S. Ahn, W.Rauh, H. Cho, and H. Warnecke, Orthogonal Distance Fitting of Implicit Curves and Surfaces. IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 620–638, 2002.

2. M. Aigner and B. Jutler, Gauss–Newton–type Technique for Robustly Fitting Implicit Defined Curves and Surfaces to Unorganized Data Points. Proc. IEEE Int. Conf. Shape Model. Appl., New York, pp. 121–130, 2009., M. Aigner and B. Jutler, Gauss–Newton–type Technique for Robustly Fitting Implicit Defined Curves and Surfaces to Unorganized Data Points. Proc. IEEE Int. Conf. Shape Model. Appl., New York, pp. 121–130, 2009.

3. M. Blane, Z. Lei, H. Civil, and D. Cooper, The 3L Algorithm for Fitting Implicit Polynomials Curves and Surface to Data. IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 3, pp. 298–313, 2000., M. Blane, Z. Lei, H. Civil, and D. Cooper, The 3L Algorithm for Fitting Implicit Polynomials Curves and Surface to Data. IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 3, pp. 298–313, 2000.

4. S.-W. Cheng and M.-K. Chiu, Implicit Manifold Reconstruction. Proceedings of the TwentyFifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 161–173, 2014., S.-W. Cheng and M.-K. Chiu, Implicit Manifold Reconstruction. Proceedings of the TwentyFifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 161–173, 2014.

5. R. Fletcher, Practical Methods of Optimization, 2nd ed. New York: Wiley, 1990., R. Fletcher, Practical Methods of Optimization, 2nd ed. New York: Wiley, 1990.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3