Electroencephalogram Analysis Based on Gramian Angular Field Transformation

Author:

Брагин Александр1,Bragin Alexander1,Спицын Владимир2,Spicyn Vladimir3

Affiliation:

1. National Research Tomsk Polytechnic University

2. Национальный исследовательский Томский политехнический университет

3. Nacional'nyy issledovatel'skiy Tomskiy politehnicheskiy universitet

Abstract

This paper addresses the problem of motion imagery classification from electroencephalogram signals which related with many difficulties such on human state, measurement accuracy, etc. Artificial neural networks are a good tool to solve such kind of problems. Electroencephalogram is time series signals therefore, a Gramian Angular Fields conversion has been applied to convert it into images. GAF conversion was used for classification EEG with Convolutional Neural Network (CNN). GAF images are represented as a Gramian matrix where each element is the trigonometric sum between different time intervals. Grayscale images were applied for recognition to reduce numbers of neural network parameters and increase calculation speed. Images from each measuring channel were connected into one multi-channel image. This article reveals the possible usage GAF conversion of EEG signals to motion imagery recognition, which is beneficial in the applied fields, such as implement it in brain-computer interface.

Publisher

Bryansk State Technical University

Reference17 articles.

1. Blankertz B. et al The BCI competition 2003: Progress andperspectives in detection and discrimination of EEG singletrials// IEEE Transactions on Biomedical Engineering. –2004. – №6 (51). – P. 1044–1051., Blankertz B. et al The BCI competition 2003: Progress andperspectives in detection and discrimination of EEG singletrials// IEEE Transactions on Biomedical Engineering. –2004. – №6 (51). – P. 1044–1051.

2. Grubov V.V., Runnova A.E., Kurovskaуa M.K., PavlovA.N., Koronovskii A.A., Hramov A.E. Demonstration ofbrain noise on human EEG signals in perception of bistableimages // Proc. SPIE. 2016. V. 9707. DOI:10.1117/12.2207390, Grubov V.V., Runnova A.E., Kurovskaua M.K., PavlovA.N., Koronovskii A.A., Hramov A.E. Demonstration ofbrain noise on human EEG signals in perception of bistableimages // Proc. SPIE. 2016. V. 9707. DOI:10.1117/12.2207390

3. Hohyun Cho, Minkyu Ahn, Sangtae Ahn, MoonyoungKwon, Sung Chan Jun, EEG datasets for motor imagerybrain–computer interface, GigaScience, Volume 6, Issue 7,July 2017, gix034,https://doi.org/10.1093/gigascience/gix034, Hohyun Cho, Minkyu Ahn, Sangtae Ahn, MoonyoungKwon, Sung Chan Jun, EEG datasets for motor imagerybrain–computer interface, GigaScience, Volume 6, Issue 7,July 2017, gix034,https://doi.org/10.1093/gigascience/gix034

4. Hramov A.E., Koronovskii A.A., Makarov V.A., PavlovA.N., Sitnikova E.Y. Wavelets in Neuroscience.Heidelberg; New York; Dordrecht; London, Springer, 2015.318 p, Hramov A.E., Koronovskii A.A., Makarov V.A., PavlovA.N., Sitnikova E.Y. Wavelets in Neuroscience.Heidelberg; New York; Dordrecht; London, Springer, 2015.318 p

5. W. Hsu and I. Chiang, ""Application of neural network tobrain-computer interface,"" 2012 IEEE InternationalConference on Granular Computing, Hangzhou, 2012, pp.163-168. doi: 10.1109/GrC.2012.6468559, W. Hsu and I. Chiang, ""Application of neural network tobrain-computer interface,"" 2012 IEEE InternationalConference on Granular Computing, Hangzhou, 2012, pp.163-168. doi: 10.1109/GrC.2012.6468559

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3