Applying Visual Analysis Procedures to Multidimensional Medical Data

Author:

Бондарев Александр1,Bondarev Aleksandr1,Галактионов Владимир2,Galaktionov Vladimir3

Affiliation:

1. Keldysh Institute of Applied Mathematics Russian Academy of Sciences

2. Институт прикладной математики им. В.М. Келдыша РАН

3. Institut prikladnoy matematiki im. V.M. Keldysha RAN

Abstract

The paper considers the tasks of visual analysis of multidimensional data sets of medical origin. For visual analysis, the approach of building elastic maps is used. The elastic maps are used as the methods of original data points mapping to enclosed manifolds having less dimensionality. Diminishing the elasticity parameters one can design map surface which approximates the multidimensional dataset in question much better. To improve the results, a number of previously developed procedures are used - preliminary data filtering, removal of separated clusters (flotation). To solve the scalability problem, when the elastic map is adjusted both to the region of condensation of data points and to separately located points of the data cloud, the quasi-Zoom approach is applied. The illustrations of applying elastic maps to various sets of medical data are presented.

Publisher

Bryansk State Technical University

Reference18 articles.

1. Bondarev, A.E. et al, 2016. Visual analysis of clusters for amultidimensional textual dataset. Scientific Visualization.8(3), 1-24., Bondarev, A.E. et al, 2016. Visual analysis of clusters for amultidimensional textual dataset. Scientific Visualization.8(3), 1-24.

2. Bondarev, A.E., 2017. Visual analysis and processing ofclusters structures in multidimensional datasets. ISPRSArchives, XLII-2/W4, 151-154., Bondarev, A.E., 2017. Visual analysis and processing ofclusters structures in multidimensional datasets. ISPRSArchives, XLII-2/W4, 151-154.

3. Bondarev, A. E.: The procedures of visual analysis formultidimensional data volumes, Int. Arch. Photogramm.Remote Sens. Spatial Inf. Sci., XLII-2/W12, 17-21,doi.org/10.5194/isprs-archives-XLII-2-W12-17-2019, Bondarev, A. E.: The procedures of visual analysis formultidimensional data volumes, Int. Arch. Photogramm.Remote Sens. Spatial Inf. Sci., XLII-2/W12, 17-21,doi.org/10.5194/isprs-archives-XLII-2-W12-17-2019

4. Bondarev, A.E., Bondarenko, A.V., Galaktionov, V.A.,2018. Visual analysis procedures for multidimensional data.Scientific Visualization 10(4), 109 - 122,doi.org/10.26583/sv.10.4.09., Bondarev, A.E., Bondarenko, A.V., Galaktionov, V.A.,2018. Visual analysis procedures for multidimensional data.Scientific Visualization 10(4), 109 - 122,doi.org/10.26583/sv.10.4.09.

5. Bondarev, A.E., Galaktionov, V.A., 2015a. Analysis ofSpace-Time Structures Appearance for Non-StationaryCFD Problems. Procedia Computer Science, 51, 1801–1810., Bondarev, A.E., Galaktionov, V.A., 2015a. Analysis ofSpace-Time Structures Appearance for Non-StationaryCFD Problems. Procedia Computer Science, 51, 1801–1810.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visual Analysis of Textual Information on the Frequencies of Joint Use of Nouns and Adjectives;Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2;2020-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3