Applying Visual Analysis Procedures to Multidimensional Medical Data
Author:
Бондарев Александр1, Bondarev Aleksandr1, Галактионов Владимир2, Galaktionov Vladimir3
Affiliation:
1. Keldysh Institute of Applied Mathematics Russian Academy of Sciences 2. Институт прикладной математики им. В.М. Келдыша РАН 3. Institut prikladnoy matematiki im. V.M. Keldysha RAN
Abstract
The paper considers the tasks of visual analysis of multidimensional data sets of medical origin. For visual analysis, the approach of building elastic maps is used. The elastic maps are used as the methods of original data points mapping to enclosed manifolds having less dimensionality. Diminishing the elasticity parameters one can design map surface which approximates the multidimensional dataset in question much better. To improve the results, a number of previously developed procedures are used - preliminary data filtering, removal of separated clusters (flotation). To solve the scalability problem, when the elastic map is adjusted both to the region of condensation of data points and to separately located points of the data cloud, the quasi-Zoom approach is applied. The illustrations of applying elastic maps to various sets of medical data are presented.
Publisher
Bryansk State Technical University
Reference18 articles.
1. Bondarev, A.E. et al, 2016. Visual analysis of clusters for amultidimensional textual dataset. Scientific Visualization.8(3), 1-24., Bondarev, A.E. et al, 2016. Visual analysis of clusters for amultidimensional textual dataset. Scientific Visualization.8(3), 1-24. 2. Bondarev, A.E., 2017. Visual analysis and processing ofclusters structures in multidimensional datasets. ISPRSArchives, XLII-2/W4, 151-154., Bondarev, A.E., 2017. Visual analysis and processing ofclusters structures in multidimensional datasets. ISPRSArchives, XLII-2/W4, 151-154. 3. Bondarev, A. E.: The procedures of visual analysis formultidimensional data volumes, Int. Arch. Photogramm.Remote Sens. Spatial Inf. Sci., XLII-2/W12, 17-21,doi.org/10.5194/isprs-archives-XLII-2-W12-17-2019, Bondarev, A. E.: The procedures of visual analysis formultidimensional data volumes, Int. Arch. Photogramm.Remote Sens. Spatial Inf. Sci., XLII-2/W12, 17-21,doi.org/10.5194/isprs-archives-XLII-2-W12-17-2019 4. Bondarev, A.E., Bondarenko, A.V., Galaktionov, V.A.,2018. Visual analysis procedures for multidimensional data.Scientific Visualization 10(4), 109 - 122,doi.org/10.26583/sv.10.4.09., Bondarev, A.E., Bondarenko, A.V., Galaktionov, V.A.,2018. Visual analysis procedures for multidimensional data.Scientific Visualization 10(4), 109 - 122,doi.org/10.26583/sv.10.4.09. 5. Bondarev, A.E., Galaktionov, V.A., 2015a. Analysis ofSpace-Time Structures Appearance for Non-StationaryCFD Problems. Procedia Computer Science, 51, 1801–1810., Bondarev, A.E., Galaktionov, V.A., 2015a. Analysis ofSpace-Time Structures Appearance for Non-StationaryCFD Problems. Procedia Computer Science, 51, 1801–1810.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Visual Analysis of Textual Information on the Frequencies of Joint Use of Nouns and Adjectives;Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2;2020-12-17
|
|