Multimodal Neural Networks in Information Security Systems

Author:

Logvinov Dmitry1ORCID,Shapenskaya Alina1ORCID,Rytov Mikhail1ORCID,Savkin Stepan1

Affiliation:

1. Bryansk State Technical University

Abstract

The article highlights the significant role of introducing multimodal neural networks into information security systems to improve operational efficiency in detecting cyber threats. Using a combination of neural networks, including convolutional neural networks (CNN), recurrent neural networks (RNN), and long short-term memory networks (LSTM), it is possible to achieve high accuracy and speed in detecting cyber threats. By combining multiple data sources such as video surveillance, audio analysis, biometric identification, and behavioural pattern analysis, these multi-modal systems offer comprehensive and in-depth security analysis, making them an effective solution against today’s threats in the information environment. The aim of the study is to analyze and compare the effectiveness of various types of neural networks used in information security, with special attention to the capabilities of multimodal systems. Research objective is to evaluate the use of various types of neural networks in different data processing scenarios, from biometric recognition to network traffic analysis. Research methods are: theoretical analysis and comparison of convolutional neural networks (CNN), recurrent neural networks (RNN) and long short-term memory networks (LSTM). The novelty of the work lies in an integrated approach to analysing multimodal systems in the context of modern cyber threats. Research results: multimodal systems equipped with modern neural networks represent the future in the field of information security. Findings: the analysis confirms the essential role of integrating artificial intelligence into information security systems, emphasizing the importance of multimodal systems in creating effective, adaptive, and scalable solutions for protecting data and information systems in the modern digital environment.

Publisher

Bryansk State Technical University BSTU

Reference8 articles.

1. Haitao H., Xiaobing S., Hongdou H., Guyu Zh., Ligang H., Jiadong R. A Novel Multimodal-Sequential Approach Based on Multi-View Features for Network Intrusion Detection. IEEE Access. 2019;7:183207-183221. DOI 10.1109/ACCESS.2019.2959131., Haitao H., Xiaobing S., Hongdou H., Guyu Zh., Ligang H., Jiadong R. A Novel Multimodal-Sequential Approach Based on Multi-View Features for Network Intrusion Detection. IEEE Access. 2019;7:183207-183221. DOI 10.1109/ACCESS.2019.2959131.

2. Golovanevsky M., Eickhoff C., Singh R. Multimodal attention-based deep learning for Alzheimer's disease diagnosis. Journal of the American Medical Informatics Association. 2022;29(12):2014-2022. DOI 10.1093/jamia/ocac168., Golovanevsky M., Eickhoff C., Singh R. Multimodal Attention-Based Deep Learning for Alzheimer’s Disease Diagnosis. Journal of the American Medical Informatics Association. 2022;29(12):2014-2022. DOI 10.1093/jamia/ocac168.

3. Сверточные нейронные сети. Викиконспекты ИТМО. URL: https://neerc.ifmo.ru/wiki/index.php?title=Сверточные_нейронные_сети (дата обращения:16.01.2024)., Convolutional Neural Networks. ITMO Wikinotes [Internet] [cited 2024 Jan 16]. Available from: https://neerc.ifmo.ru/wiki/index.php?title=Convolutional_neural_networks.

4. Дычков И.Н. Сверточные нейронные сети // Тенденции развития науки и образования. 2021. № 73-1. С. 38-41. DOI 10.18411/lj-05-2021-08. EDN MQYWDB., Dychkov I.N. Convolutional Neural Networks. Trends in the Development of Science and Education. 2021;73-1:38-41. DOI 10.18411/lj-05-2021-08.

5. Рекуррентные нейронные сети. Викиконспекты ИТМО. URL: https://neerc.ifmo.ru/wiki/index.php?title=Рекуррентные_нейронные_сети (дата обращения:18.02.2024)., Recurrent Neural Networks. ITMO Wikinotes. [Internet] [cited 2024 Feb 18]. Available from: https://neerc.ifmo.ru/wiki/index.php?title=Recurrent_neural_networks.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3