Applying the Decision Tree Method in the Field of Management Activities

Author:

Saranceva Svetlana1ORCID

Affiliation:

1. Moscow State Technical University of Radio Engineering, Electronics and Automation

Abstract

This article is an overview of the decision tree method and its application in the field of management activities. The decision tree method is a powerful machine learning tool that can be effectively used for making managerial decisions, predicting the results of business processes, identifying key success factors and optimizing strategic processes, as well as reducing personal factors such as the manager’s psychological barriers. The article discusses the basic principles of the method, its application in management analysis, as well as ways to improve the quality of decision tree models. The author, using general scientific and special methods, provides an example of a simple but effective system for using the decision tree method in various areas of management, which makes this article a useful resource for managers and analysts interested in applying modern data analysis methods to improve managerial decisions. In conclusion, findings are drawn about the advisability of using the decision tree method, on the basis of which a scalable management decision-making system can be created using a universal, simple learning algorithm for artificial intelligence technologies and can be implemented in the company’s strategic management.

Publisher

Bryansk State Technical University BSTU

Reference11 articles.

1. Барабанщиков В.А. Системный подход в структуре психологического познания // Методология и история психологии. 2007. Т. 2, № 1. С. 86–99. EDN QAAXKZ., Barabanshchikov V.A. Systematic Approach in Structure of Psychological Cognition. Methodology and History of Psychology. 2007;2(1):86-99.

2. Воробьев А.В. Обзор применения математических методов при проведении психологических исследований // Психологические исследования. 2010. № 2. С. 8. EDN LSRDDR., Vorobiov A.V. The Review of Mathematical Methods Application in Psychological Researches. Psychological Studies. 2010;2:8.

3. Знаков В.В. Динамический подход к исследованию личности и процессуальный анализ в психологии субъекта // Психологический журнал. 2019. – Т.40, №5. С. 27–34. DOI 10.31857/S020595920006073-6. EDN SUOACH., Znakov V.V. Dynamic Approach to the Research of the Personality and the Procedural Analysis in Psychology of the Subject. Psikhologicheskii Zhurnal. 2019;40(5):27-34. DOI 10.31857/S020595920006073-6.0.

4. Резниченко Н.С., Шилов С.Н., Абдулкин В.В. Нейросетевой подход в решении медико-психологических проблем и в диагностическом процессе у лиц с ограниченными возможностями здоровья (обзор литературы) // Журнал Сибирского федерального университета. Серия: Гуманитарные науки. 2013. Т. 6, № 9. С. 1256–1264. EDN PIXARB., Reznichenko N.S., Shilov S.N., Abdulkin V.V. Neural Network Approach to the Solution of the Medical-Psychological Problems and in Diagnosis Process for Persons With Disabilities (Literature Review). Journal of Siberian Federal University. Series: Humanities. 2013;6(9):1256-1264.

5. Шадриков В.Д. К новой психологической теории способностей и одаренности // Психологический журнал. 2019. Т.40, №2. С. 15–26. DOI 10.31857/S020595920002981-5. EDN VWWYPQ., Shadrikov V.D. To New Psychological Theory of Abilities and Giftedness. Psikhologicheskii Zhurnal. 2019;40(2):15-26. DOI 10.31857/S020595920002981.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3