CREATING A GROOVING AND CUTTING TOOL WITH COOLING CHANNELS MADE USING ADDITIVE TECHNOLOGIES

Author:

Kugaevskiy Sergey1,Pizhenkov Evgeniy2,Podgorbunskih Vladimir2

Affiliation:

1. Ural Federal University named First President of Russia B. Yeltsin

2. Ural Federal University

Abstract

The study objective is to develop the design and technology of manufacturing grooving and cutting tools with internal channels for supplying coolants under high pressure. The design assumes the use of conventional replaceable cutting carbide plates (CCP) offered by many manufacturers. Due to the fact that drilling of narrow channels in the cutter is very problematic, it is proposed to manufacture the front part of the cutter, which secures the replaceable cutting carbide plate, in an additive way. The back of the cutter (holder) can be made by traditional methods. At the same time, the options for fixing the replaceable cutting carbide plates (CCP) are analysed, as well as basing it in the holder and the method of coolant supply. The variants of the design of grooving and cutting tools according to the criterion of treatment features are considered. Special attention is paid to the design of cutters for the surface treatment of narrow deep grooves. The novelty of the work is in carrying out research related to the development of a new design of cutting tools with channels for coolant supply and the method of its manufacture. The research method is 3D modeling of the tool and computer analysis of the stress state on the support surface of the tool head. The development of designs of grooving and cutting tools with cooling channels made with the help of additive technologies is currently not described in the scientific literature. Study result: 3D models, drawings of tools for cutting radial and axial grooves and tools for cutting the edges are obtained. Studies of the stressed state of the support surfaces for CCP are carried out. Prototypes of the corresponding three types of cutters are made. Conclusions: the conducted research proves the prospects of using the method. Thanks to the use of the developed tool, it is possible to increase the productivity of machining parts made of hard-to-machine material, including titanium alloys and heat-resistant steels. As a result, the task of creating a domestic cutting tool that surpasses imported analogues in its properties can be solved.

Publisher

Bryansk State Technical University BSTU

Reference10 articles.

1. Sandvik.coromant. Отрезка и обработка канавок [электронный ресурс] URL: hhttps://www.sandvik.coromant.com/ru-ru/products/pages/parting-and-grooving-tools.aspx (дата обращения 23.05.22)., Sandvik.coromant. Cutting and grooving [Internet]. [cited 2022 May 23]. Available from: hhttps://www.sandvik.coromant.com/ru-ru/products/pages/parting-and-grooving-tools.aspx

2. Попок Н.Н. Анализ тенденций проектирования инструментальных систем. Вестник Полоцкого государственного университета. Серия B. Промышленность. Прикладные науки. 2012;3. URL: http://elib.psu.by:8080/handle/123456789/491., Popok NN. Analysis of trends in the design of tool systems [Internet].. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya B. Promyshlennost'. Prikladnye nauki. 2012;3. Available from: http://elib.psu.by:8080/handle/123456789/491

3. Astakhov V.P. Tribology of Cutting Tools. In: Davim J. (eds) Tribology in Manufacturing Technology. Materials Forming, Machining and Tribology. Springer, Berlin, Heidelberg. 2012. URL: https://doi.org/10.1007/978-3-642-31683-8_1 ., Astakhov VP. Tribology of Cutting Tools. In: Davim J, editor. Tribology in Manufacturing Technology. Materials Forming, Machining and Tribology. Springer, Berlin, Heidelberg; 2012. Available from: https://doi.org/10.1007/978-3-642-31683-8_1

4. Çolak O. Investigation on Machining Performance of Inconel 718 under High Pressure Cooling Conditions. Strojniški vestnik - Journal of Mechanical Engineering. 2012;58(11):683-690. doi:10.5545/sv-jme.2012.730., Çolak O. Investigation on Machining Performance of Inconel 718 under High Pressure Cooling Conditions. Strojniški vestnik - Journal of Mechanical Engineering. 2012;58(11):683-690. doi:10.5545/sv-jme.2012.730.

5. Khan A., Mia M., Ranjan N. Dhar High-pressure coolant on flank and rake surfaces of tool in turning of Ti-6Al-4V: investigations on forces, temperature, and chips. Int J Adv Manuf Technol. 2017;90:1977–1991. doi: 10.1007/s00170-016-9511-6, Khan A, Mia M, Ranjan N. Dhar High-pressure coolant on flank and rake surfaces of tool in turning of Ti-6Al-4V: investigations on forces, temperature, and chips. Int J Adv Manuf Technol. 2017;90:1977–1991. doi: 10.1007/s00170-016-9511-6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3