Affiliation:
1. Samara State Technical University
Abstract
The study results are given which are devoted to finding the effect of reinforcement with fine phase of titanium carbide in the amount of 10 masses% on the physico-mechanical and tribotechnical properties of industrial aluminum AM4.5Kd alloy. The physico-mechanical (density, porosity, coefficient of thermal linear expansion, hardness, microhardness) and tribotechnical (wear rate, friction factor, self-heating temperature) properties of the composite material AM4.5Kd-10%TiC obtained by self-propagating high-temperature synthesis before and after heat treatment are analyzed. It is found out that composite samples after heat treatment have a good combination of physical and mechanical properties, namely a low level of porosity, a low value of the coefficient of thermal linear expansion, and the values of hardness and microhardness are increased twice. Special attention should be paid to the fact that reinforcement with a ceramic phase in combination with heat treatment leads to a significant increase in the level of wear resistance of the matrix alloy (by 9 times) and a decrease in the friction factor (by 4 times). Thus, according to the results of the studies conducted, the resulting composite material AM4.5Kd-10%TiC can be recommended as a material used in tribological assemblies.
Publisher
Bryansk State Technical University BSTU
Reference31 articles.
1. Kim D. Y., Choi H.J. «Recent Developments towards Commercialization of Metal Matrix Composites". Materials (Basel). 2020;13(12):2820-2828. DOI: 10.3390/ ma13122828., Kim DY, Choi HJ. Recent developments towards commercialization of metal matrix composites. Materials (Basel). 2020;13(12):2820-2828. DOI: 10.3390/ ma13122828.
2. Lovshenco F. G., Lozikov I. A., Khabibutin A. I. «High-temperature aluminum composite materials with special physical and mechanical properties produced by mechanical alloying». Foundry production and metallurgy. 2020;3; 99–111. DOI: 10.21122 16X3-6065-2020-3-99−111., Lovshenco FG, Lozikov IA, Khabibutin AI. High-temperature aluminum composite materials with special physical and mechanical properties produced by mechanical alloying. Foundry Production and Metallurgy. 2020;3; 99–111. DOI: 10.21122 16X3-6065-2020-3-99−111.
3. Alam M. A., Ya H. H., Azeem M., Yusuf M., Soomro I. A., Masood F., Shozib I.A., Sapuan S. M., Akhter J. «Artificial Neural Network Modeling to Predict the Effect of Milling Time and TiC Content on the Crystallite Size and Lattice Strain of Al7075-TiC Composites Fabricated by Powder Metallurgy. Crystals. 2022;12:372–392. DOI: 10.3390/cryst12030372., Alam MA, Ya HH, Azeem M, Yusuf M, Soomro IA, Masood F, Shozib IA, Sapuan SM, Akhter J. Artificial neural network modeling to predict the effect of milling time and TiC content on the crystallite size and lattice strain of Al7075-TiC composites fabricated by powder metallurgy. Crystals. 2022;12:372–392. DOI: 10.3390/cryst12030372.
4. Shi Q., Mertens R., Dadbakhsh S., Li G., Yang S. «In-situ formation of particle reinforced Aluminium matrix composites by laser powder bed fusion of Fe2O3/AlSi12 powder mixture using laser melting/remelting strategy». Journal of Materials Processing Technology. 2022;299:117357. DOI: 10.1016/j.jmatprotec.2021.117357., Shi Q, Mertens R, Dadbakhsh S, Li G, Yang S. In-situ formation of particle reinforced Aluminium matrix composites by laser powder bed fusion of Fe2O3/AlSi12 powder mixture using laser melting/remelting strategy. Journal of Materials Processing Technology. 2022;299:117357. DOI: 10.1016/j.jmatprotec.2021.117357.
5. Амосов А.П., Луц А.Р., Латухин Е.И., Ермошкин А.А. Применение процессов СВС для получения in situ алюмоматричных композиционных материалов, дискретно армированных наноразмерными частицами карбида титана (обзор). Известия высших учебных заведений. Цветная металлургия. 2016. №1. С.39-49. DOI: 10.17073/0021-2016-1-39-49., Amosov AP, Lutz AR, Latukhin EI, Ermoshkin AA. Application of SHS processes for the production of in situ aluminium matrix composites discretely reinforced with nanosized titanium carbide particles (review). Izvestiya. Non-ferrous Metallurgy. 2016;1:39-49. DOI: 10.17073/0021-2016-1-39-49.