Affiliation:
1. Samara State Technical University
Abstract
The objective is to study the possibility of ob-taining titanium silicide using the azide technology of self-propagating high-temperature synthesis (SHS-Az) in silicon-titanium halide-sodium azide system.
The task to which the paper is devoted is to find the optimal composition of the charge, which combus-tion gives the opportunity to obtain titanium halide by SHS-Az method.
Research methods: the study of the titanium sil-icide synthesis in powder is carried out in the mode of solid-flame combustion in SHS-Az laboratory reactor. The synthesized powders are subjected to studies al-lowing to define the phase composition and structure. The studies are carried out using a diffractometer and a scanning electron microscope.
The novelty of the work is in synthesizing tita-nium silicide not only by a new method in the mode of high-temperature combustion of the heterogeneous silicon-titanium halide-sodium azide system, but also by obtaining a powder with close values to the range of nanoparticles.
Study results of obtaining titanium silicide by SHS-Az method from the heterogeneous silicon-titanium halide-sodium azide system show that the target product is a finely dispersed mixture of particles of equal shape but of different phase composition: Ti5Si3, TiSi2, TiN, Si, Ti. The average particle size is equal to 150-200 nm.
Conclusions: it is found that Ti5Si3 and TiSi2 ti-tanium silicides can be obtained in the combustion mode by SHS-Az method from silicon-titanium halide-sodium azide system.
Publisher
Bryansk State Technical University BSTU
Reference19 articles.
1. Yeh C.L., Wang H.J., Chen W.H. A comparative study on combustion synthesis of Ti–Si compounds. Journal of Alloys and Compounds. 450 (2008). PP. 200–207., Yeh CL, Wang HJ, Chen WH. A comparative study on combustion synthesis of Ti–Si compounds. Journal of Alloys and Compounds. 2008;450:200–207.
2. Yeh C.L., Chen W.H., Hsu С.С. Formation of titanium silicides Ti5Si3 and TiSi2 by self-propagating combustion synthesis. Journal of Alloys and Compounds. 2007. 432 (2007). РР. 90-95., Yeh CL, Chen WH, Hsu CC. Formation of titanium silicides Ti5Si3 and TiSi2 by self-propagating combustion synthesis. Journal of Alloys and Compounds. 2007;432:90-95.
3. Чумаковa Ю.А., Князеваa А.Г., Прибытковa Г.А. Влияние избытка титана в реакционной смеси Ti-Si на синтез композита в волне горения. Теоретические основы химической технологии. 2021. T. 55. №3. С. 375-389., Chumakova YuA, Knyazev AA, Pribytkova GA. Influence of excess titanium in Ti-Si reaction mixture on the composite synthesis in the combustion wave. Teoreticheskie Osnovi Khimicheskoy Tekhnologii. 2021;55(3):375-389.
4. Прибытков Г.А., Криницын М.Г., Коржова В.В. Синтез и структура СВС композитов Ti5Si3+Ti связка. Химическая физика и мезоскопия. 2002. Т. 22. №3. С.269-280., Pribytkov GA, Krinitsyn MG, Korzhova VV. Synthesis and structure of SHS composites in Ti5Si3+Ti. Chemical Physics and Mesoscopy. 2002;22(3):269-280.
5. Патент № 2629121 Российская Федерация, МПК С23С 16/42 (2006.01), С23С 16/44 (2006.01). Способ получения силицидов титана : №2016129333 : заявл. 18.07.2016 : опубл. 24.08.17 / Кустов А.Д., Парфенов О.Г.; заявитель ФИЦ КНЦ СО РАН. - 6 с., Kustov AD, Parfenov OG. Patent No. 2629121 Russian Federation, IPC C23C 16/42 (2006.01), C23C 16/44 (2006.01). Method for obtaining titanium silicides: No. 2016129333. 2017 Aug 24.