Distal nucleotides affect the rate of stop codon read‐through

Author:

Escobar Luciana I.1,Alonso Andres M.2,Ronderos Jorge R.3,Diambra Luis1

Affiliation:

1. CREG Universidad Nacional de La Plata‐CONICET La Plata CP 1900 Argentina

2. INTech Universidad Nacional de San Martin Chascomus CP 7130 Argentina

3. FCNyM Universidad Nacional de La Plata La Plata CP 1900 Argentina

Abstract

BackgroundA key step in gene expression is the recognition of the stop codon to terminate translation at the correct position. However, it has been observed that ribosomes can misinterpret the stop codon and continue the translation in the 3′UTR region. This phenomenon is called stop codon read‐through (SCR). It has been suggested that these events would occur on a programmed basis, but the underlying mechanisms are still not well understood.MethodsHere, we present a strategy for the comprehensive identification of SCR events in the Drosophila melanogaster transcriptome by evaluating the ribosomal density profiles. The associated ribosomal leak rate was estimated for every event identified. A statistical characterization of the frequency of nucleotide use in the proximal region to the stop codon in the sequences associated to SCR events was performed.ResultsThe results show that the nucleotide usage pattern in transcripts with the UGA codon is different from the pattern for those transcripts ending in the UAA codon, suggesting the existence of at least two mechanisms that could alter the translational termination process. Furthermore, a linear regression models for each of the three stop codons was developed, and we show that the models using the nucleotides at informative positions outperforms those models that consider the entire sequence context to the stop codon.ConclusionsWe report that distal nucleotides can affect the SCR rate in a stop‐codon dependent manner.

Publisher

Wiley

Subject

Applied Mathematics,Computer Science Applications,Biochemistry, Genetics and Molecular Biology (miscellaneous),Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Suppressor tRNA in gene therapy;Science China Life Sciences;2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3