Light‐driven synthetic microbial consortia: playing with an oxygen dilemma

Author:

Zhu Huawei1,Li Yin1

Affiliation:

1. CAS Key Laboratory of Microbial Physiological and Metabolic Engineering State Key Laboratory of Microbial Resources Institute of Microbiology Chinese Academy of Sciences Beijing 100101 China

Abstract

BackgroundLight‐driven synthetic microbial consortia are composed of photoautotrophs and heterotrophs. They exhibited better performance in stability, robustness and capacity for handling complex tasks when comparing with axenic cultures. Different from general microbial consortia, the intrinsic property of photosynthetic oxygen evolution in light‐driven synthetic microbial consortia is an important factor affecting the functions of the consortia.ResultsIn light‐driven microbial consortia, the oxygen liberated by photoautotrophs will result in an aerobic environment, which exerts dual effects on different species and processes. On one hand, oxygen is favorable to the synthetic microbial consortia when they are used for wastewater treatment and aerobic chemical production, in which biomass accumulation and oxidized product formation will benefit from the high energy yield of aerobic respiration. On the other hand, the oxygen is harmful to the synthetic microbial consortia when they were used for anaerobic processes including biohydrogen production and bioelectricity generation, in which the presence of oxygen will deactivate some biological components and compete for electrons.ConclusionsDeveloping anaerobic processes in using light‐driven synthetic microbial consortia represents a cost‐effective alternative for production of chemicals from carbon dioxide and light. Thus, exploring a versatile approach addressing the oxygen dilemma is essential to enable light‐driven synthetic microbial consortia to get closer to practical applications.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Applied Mathematics,Computer Science Applications,Biochemistry, Genetics and Molecular Biology (miscellaneous),Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3