Evaluation of avian adenovirus inactivation methods used in the production of influenza vaccines

Author:

Savina NN1ORCID,Ekimov AA1ORCID,Trukhin VP1ORCID,Evtushenko AE1ORCID,Zhirenkina EN1ORCID,Sinegubova EO2,Slita AV2ORCID

Affiliation:

1. Saint Petersburg Research Institute of Vaccines and Serums, FMBA, Russia

2. Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Saint Petersburg, Russia

Abstract

Inactivation of influenza virus and other potential contaminants like avian adenoviruses coming from embryonated chicken eggs is a critical step in the production of inactivated influenza vaccines. Inactivation must lead to a guaranteed reduction in contaminant titers by at least 4 lg (PFU)/ml. The aim of this study was to identify an optimum cell line for adenovirus propagation and to estimate a reduction in adenovirus titers in vaccine intermediates after inactivation. In a series of experiments, we identified the optimum conditions and the optimum cell line for the propagation of avian adenovirus (strains CELO and Fontes). The most commonly used inactivation methods were analyzed, including inactivation by β-propiolactone and UV light. Viral titers were measured by plaque assays. After 10 h of inactivation with β-propiolactone, CELO titers fell by 4.12 ± 0.06 lg, whereas Fontes titers, by 4.20 ± 0.19 lg, suggesting that β-propiolactone is an effective inactivating agent. Exposure to UV light led to a reduction in CELO titers by 4.69 ± 0.89 lg and a reduction in Fontes titers by 4.44 ± 1.06 lg after 5 min. N-octyl-β-D-glucopyranoside added at the splitting step reduced CELO titers by 0.93 ± 0.15 lg and Fontes titers by 1.04 ± 0.12 lg, whereas tetradecyltrimethylammonium bromide led to a reduction in CELO and Fontes titers by 1.18 ± 0.17 lg and 1.12 ± 0.38 lg, respectively.

Publisher

Federal Medical Biological Agency

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3