Isolation and characterization of Klebsiella pneumoniae bacteriophages encoding polysaccharide depolymerases with rare capsule specificity

Author:

Gorodnichev RB1ORCID,Kornienko MA1ORCID,Bespiatykh DA1ORCID,Malakhova MV1,Veselovsky VA1ORCID,Goloshchapov OV2ORCID,Chukhlovin AB2,Bespyatykh JA1ORCID,Shitikov EA1ORCID

Affiliation:

1. Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia

2. Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia

Abstract

Bacterial infections caused by antibiotic resistant strains of Klebsiella pneumoniae are among the most dangerous threats for the world's public healthcare. Treatment with bacteriophages and/or their derivatives could become one of the alternative methods for therapy of infections caused by K. pneumoniae. The study was aimed to isolate from the environment and characterize the capsule-specific K. pneumoniae bacteriophages that are useful for therapy and possess the polysaccharide depolymerase genes. Bacteriophages were isolated from the river water samples by enrichment method. The host range of bacteriophages were assessed using the collection of 180 K. pneumoniae clinical strains. Bacteriophage whole genome sequencing was performed on the MiSeq platform (Illumina). Four new bacteriophages from different taxonomic groups were isolated and characterized during the study: vB_KpnM_NDO71 (Vequintavirinae family), vB_KpnS_MAG26fr (Casjensviridae family), vB_KpnS_MDA2066 (Ackermannviridae family), and vB_KpnS_PMM-G3 (Drexlerviridae family). Bacteriophages vB_KpnM_NDO71, vB_KpnS_MAG26fr, and vB_KpnS_PMM-G3 had a narrow lytic spectrum and lysed all strains with the capsular type of the host: KL45, KL19 or KL28, respectively. Bacteriophage vB_KpnS_MDA2066 showed lytic activity against strains with two different capsular types: KL19 and KL107. Bacteriophages were strictly virulent and contained no integrase genes, potentially dangerous toxin genes or antibiotic resistance determinants. This allows them to be used in therapeutic practice. Receptor-binding proteins represented by polysaccharide depolymerases were predicted for each bacteriophage.

Publisher

Federal Medical Biological Agency

Subject

Law,Political Science and International Relations,General Medicine,Ophthalmology,Law,Law,Political Science and International Relations,Sociology and Political Science,Applied Microbiology and Biotechnology,Food Science,Law,General Dentistry,Development,Geography, Planning and Development,Rehabilitation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3