Affiliation:
1. Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
Abstract
Identification of novel low molecular weight compounds with antitumor activity is the first important step towards the development of candidate drugs and a popular trend in in vitro pharmacology. The aim of the study was to assess the key trends and rank the scientific priorities in anticancer drug design using bibliometric analysis. The protocol involved using the panel of bibliographic databases (PubMed, Scopus, Cortellis) and analytical web-based tools PubChem, FACTA +, ClustVis, Reaxys, PathwayStudio and VOSviewer software to review a sample of 1657 papers issued 2020–2021.The work was also focused on 70 new promising basic structures and derivatives targeted at inhibiting both individual pro-tumor proteins and signaling cascades. It was found that serine-threonine protein kinases, receptor tyrosine kinases, DNA topoisomerases and tubulins as well as signaling pathways PI3K, mTOR, AKT1, STAT3, HIF-1a, and p53 account for up to 60% of the total structure of cellular targets for the design of anticancer drugs. The increasing scientific interest in innovative inhibitors of tumor-associated protein complexes, transcription factors and metabolic enzymes has been found. The compounds, which belong to heterocycles, glycosides, quinones and terpenes, were mentioned in 71% of papers as the basic structures for antitumor derivatives design. Papers, published in 2019, in which the compounds, such as lapachone, luteolin, quercetin, monastrol, and crisosplenol D are studied in the context of the design of new drug prototypes, have the highest citation rate. The systematic bibliometric approach involving the use of a panel of analytical resources makes it possible to assess R&D trends and scientific priorities in anticancer drug design, thus organically complementing the classic reviews in periodicals.
Publisher
Federal Medical Biological Agency